版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第=page11页,共=sectionpages11页2023-2024学年河南省南阳市油田九年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。在每小题给出的选项中,只有一项是符合题目要求的。1.在下列二次根式中,与2是同类二次根式的是(
)A.4 B.6 C.122.一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A、BA.3.5cm B.3cm C.3.下列运算正确的是(
)A.2+3=5 B.4.用配方法解一元二次方程x2−6xA.(x+6)2=28 B.5.如图,在△ABC中,∠CAD=90°,AD=3,A
A.54 B.52 C.2 6.某人患了流感,经过两轮传染后共有36人患了流感.设每一轮传染中平均每人传染了x人,则可得到方程(
)A.x+(1+x)=36 7.若关于x的一元二次方程x2−3x+mA.−9 B.−94 C.98.中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是(
)
A.18 B.16 C.139.下列关于二次函数y=(x−A.图象是一条开口向下的抛物线 B.图象与x轴没有交点
C.当x<2时,y随x增大而增大 D.10.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P是斜边AB上一动点(不与点A、B重合),PQ⊥AB交
A. B.
C. D.二、填空题:本题共5小题,每小题3分,共15分。11.已知x为正整数,写出一个使x−3在实数范围内没有意义的x值是______12.两个相似图形的周长比为3:2,则面积比为______.13.某学习小组做抛掷一枚瓶盖的实验,整理的实验数据如表:累计抛掷次数501002003005001000200030005000盖面朝上次数2854106158264527105615872650盖面朝上频率0.56000.54000.53000.52670.52800.52700.52800.52900.5300①通过上述实验的结果,可以推断这枚瓶盖有很大的可能性不是质地均匀的;
②第2000次实验的结果一定是“盖面朝上”;
③随着实验次数的增大,“盖面朝上”的概率接近0.53.
其中正确的是______.(填序号)14.如图,三角形纸片ABC中,AC=6,BC=9,分别沿与BC,AC平行的方向,从靠近
15.矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点三、解答题:本题共8小题,共75分。解答应写出文字说明,证明过程或演算步骤。16.(本小题10分)
(1)计算:(π−1)0−17.(本小题9分)
如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是−6,−1,5,转盘B上的数字分别是6,−7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).
(1)转动转盘,转盘A指针指向正数的概率是______;
(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B18.(本小题9分)
如图,在▱ABCD中,∠DAB=30°.
(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)19.(本小题9分)
已知二次函数y=x2−2x−3.
(1)求该二次函数的顶点坐标;
(2)求该二次函数图象与x轴、y轴的交点;
(3)20.(本小题9分)
拜寺口双塔,分为东西两塔,位于宁夏回族自治区银川市贺兰县拜寺口内,是保存最为完整的西夏佛塔,已有近1000年历史,是中国佛塔建筑史上不可多得的艺术珍品.某数学兴趣小组决定采用我国古代数学家赵爽利用影子对物体进行测量的原理,来测量东塔的高度.东塔的高度为AB,选取与塔底B在同一水平地面上的E、G两点,分别垂直地面竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为46m,并且东塔AB、标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即ED=2m),从D处观察A点,A、F、D在一直线上;从标杆GH后退4m到C处(即CG=4m),从C处观察A21.(本小题9分)
某品牌大米远近闻名,深受广大消费者喜爱,某超市每天购进一批成本价为每千克4元的该大米,以不低于成本价且不超过每千克7元的价格销售.当每千克售价为5元时,每天售出大米950kg;当每千克售价为6元时,每天售出大米900kg,通过分析销售数据发现:每天销售大米的数量y(kg)与每千克售价x(元)满足一次函数关系.
(1)请直接写出y与x22.(本小题10分)
某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为48m3,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求价出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:
方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN.
方案二,抛物线型拱门的跨度ON′=8m,拱高P′E′=6m.其中,点N′在x轴上,P′E′⊥O′N′,O′E′=E′N′.
要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架23.(本小题10分)
阅读与思考:下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.瓦里尼翁平行四边形
我们知道,如图1,在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,顺次连接E,F,G,H,得到的四边形EFGH是平行四边形.
我查阅了许多资料,得知这个平行四边形EFGH被称为瓦里尼翁平行四边形.瓦里尼翁(Varingnon,Pierre1654−1722)是法国数学家、力学家.瓦里尼翁平行四边形与原四边形关系密切.
①当原四边形的对角线满足一定关系时,瓦里尼翁平行四边形可能是菱形、矩形或正方形.
②瓦里尼翁平行四边形的周长与原四边形对角线的长度也有一定关系.
③瓦里尼翁平行四边形的面积等于原四边形面积的一半.此结论可借助图1证明如下:
证明:如图2,连接AC,分别交EH,FG于点P,Q,过点D作DM⊥AC于点M,交HG于点N.
∵H,G分别为任务:
(1)填空:材料中的依据1是指:______.
依据2是指:______.
(2)请用刻度尺、三角板等工具,画一个四边形ABCD及它的瓦里尼翁平行四边形EFGH,使得四边形EFGH为矩形;(要求同时画出四边形ABCD的对角线)
(3答案和解析1.【答案】D
【解析】【分析】
本题考查同类二次根式,解题的关键是明确什么是同类二次根式,解决此题先要将各选项中的二次根式化为最简二次根式,再找被开方数是2的二次根式即可得出结论.
【解答】
解:∵4=2,6=6,12=23,2.【答案】B
【解析】解:由图可得,
∠ACB=90°,AB=7−1=6,点D为线段AB3.【答案】C
【解析】解:A.2+3无法合并,故此选项不合题意;
B.(−5)2=5,故此选项不合题意;
C.(3−4.【答案】D
【解析】解:x2−6x+8=0,
x2−6x=−8,
x2−65.【答案】A
【解析】解:∵∠CAD=90°,AD=3,AC=4,
∴DC=AD2+AC2=32+42=5,
6.【答案】C
【解析】解:由题意得:1+x+x(1+x)=36,
故选:C.
患流感的人把病毒传染给别人,自己仍然患病,包括在总数中.设每一轮传染中平均每人传染了x7.【答案】C
【解析】解:∵关于x的一元二次方程x2−3x+m=0有两个相等的实数根,
∴Δ=b2−4ac=(−3)2−4m=08.【答案】B
【解析】解:记《论语》《孟子》《大学》《中庸》分别为A,B,C,D,画树状图如下:
一共有12种等可能的结果,其中抽取的两本恰好是《论语》(即A)和《大学》(即C)的可能结果有2种可能,
∴P(抽取的两本恰好是《论语》和《大学》的可能结果)=212=16,
故选:9.【答案】D
【解析】解:A、∵a=1>0,图象的开口向上,故此选项不符合题意;
B、∵y=(x−2)2−3=x2−4x+1,
∴Δ=(−4)2−4×1×1=12>0,
即图象与x轴有两个交点,
故此选项不符合题意;10.【答案】C
【解析】解:当点Q在AC上时,
∵∠C=∠APQ=90°,∠A=∠A,
∴△ABC∽△AQP,
∴AC:BC=AP:QP,
即3:4=x:QP,
∴QP=43x,
∴y=12·AP·PQ=12x·43x=23x2;
当点11.【答案】1(答案也可以是2【解析】解:要使x−3在实数范围内没有意义,
则x−3<0,
∴x<3,
∵x为正整数,
∴x的值是1(答案也可以是2).
故答案为:1(12.【答案】9:4
【解析】解:∵两个相似图形,其周长之比为3:2,
∴其相似比为3:2,
∴其面积比为9:4.
故答案为:9:4.
由两个相似图形,其周长之比为3:2,根据相似图形的周长的比等于相似比,即可求得其相似比,又由相似图形的面积的比等于相似比的平方,即可求得答案.
此题考查了相似图形的性质.此题比较简单,注意熟记定理是关键.13.【答案】①③【解析】解:①通过上述实验的结果,可以推断这枚瓶盖有很大的可能性不是质地均匀的,故正确;
②第2000次实验的结果不一定是“盖面朝上”,故错误;
③随着实验次数的增大,“盖面朝上”的概率接近0.53,故正确,
故答案为:①③.
根据图表和各个小题的说法可以判断是否正确,从而可以解答本题.
14.【答案】14
【解析】解:如图,
∵DE//BC,DF//AC,
∴四边形DECF为平行四边形,△ADE∽△ABC,△BDF∽△BAC15.【答案】2或1+【解析】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:
①如图1,当∠MND=90°时,
则MN⊥AD,
∵四边形ABCD是矩形,
∴∠A=90°,
∴MN//AB,
∵M为对角线BD的中点,
∴AN=DN,
∵AN=AB=1,
∴AD=2AN=2;
如图2,当∠NMD=90°时,
则MN⊥BD,
∵M为对角线B16.【答案】解:(1)原式=1−22+22=1;
(2)∵【解析】(1)实数的混合运算,按照实数的混合运算法则计算即可.
(217.【答案】13【解析】解:(1)∵A带指针的转盘被分成三个面积相等的扇形,转盘上的数字分别是−6,−1,5,其中正数有1个,
∴P(转动转盘,转盘A指针指向正数)−−560511−−−−4−39一共有9种等可能的结果,其中a+b>0有4种可能的结果,a+b<0有4种等可能的结果,
∴P(小聪获胜)=49,
P(小明获胜)=49,
18.【答案】解:(1)如图E即为所求作的点;
(2)∵cos∠DA【解析】(1)由基本作图即可解决问题;
(2)由锐角的余弦求出AE的长,即可得到B19.【答案】解:(1)y=x2−2x−3=(x−1)2−4,
∴该二次函数图象的顶点坐标为(1,−4);
(2)令x=0,则y=−3,
∴该二次函数图象与y轴的交点为(0,−3);
令y=【解析】(1)用配方法即可求解;
(2)当y=0时,即−x2−2x−3=0,解得x1=3,20.【答案】解:设BD=x m,则BC=BD+DG+CG=x+46−2+4=(x+48)m,
∵AB⊥BC,EF⊥BC,
∴AB//EF,【解析】设BD=xm,则BC=(x+48)m,通过证明△A21.【答案】解:(1)根据题意设y=kx+b,
当每千克售价为5元时,每天售出大米950kg;
当每千克售价为6元时,每天售出大米900kg,
则5k+b=9506k+b=900,
解得:k=−50b=1200,
则y与x的函数关系式;y=−50x+1200(4≤x≤7),
(2)∵定价为x元,每千克利润(x−4)元,
由(1)知销售量为y=−50x+1200(4≤x≤7),【解析】(1)根据题意设y=kx+b,当每千克售价为5元时,每天售出大米950kg;当每千克售价为6元时,每天售出大米900kg,则5k+b=9506k+b=900,求得k、b即可;22.【答案】解:(1)由题意知,方案一中抛物线的顶点P(6,4),
设抛物线的函数表达式为y=a(x−6)2+4,
把O(0,0)代入得:0=a(0−6)2+4,
解得:a=−19,【解析】(1)由题意知抛物线的顶点P(6,4),设顶点式用待定系数法可得方案一中抛物线的函数表达式为y=−19x2+43x;
(223.【答案】三角形中位线定理(或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房产认购专项协议范本
- 2024年成品油销售协议模板
- 2024年高效代理合作招募协议模板
- 2024年幼教岗位聘用协议范本
- 彩钢瓦安装工程协议模板2024年
- 2024年海水产品长期供应协议模板
- 2024年度润滑油分销协议范本
- 文书模板-《硬件设计合同》
- 2024房产居间服务协议模板
- 安全押运员2024年劳动协议格式样本
- 排拉表标准格式
- 华为经营管理-华为市场营销体系(6版)
- 子宫颈机能不全临床诊治中国专家共识(2023年)
- 马克思主义关于民族的基本理论-
- 卫浴营销方案
- 高三数学备课组高考数学经验总结
- 医院布草洗涤服务方案(技术方案)
- 太空互联网的发展与挑战
- 小学语文-我最喜欢的玩具教学课件设计
- 天翼云高级解决方案架构师练习试题附答案
- 2022保安服务装备配备规范
评论
0/150
提交评论