第18章 静电场中的电介质_第1页
第18章 静电场中的电介质_第2页
第18章 静电场中的电介质_第3页
第18章 静电场中的电介质_第4页
第18章 静电场中的电介质_第5页
已阅读5页,还剩76页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第18章

静电场中的电介质

本章主要内容§18.1

电介质对电场的影响§18.2

电介质的极化§18.3

Gauss

定理§18.4

电容器和它的电容§18.5

电容器的能量第18章静电场中的电介质第18章静电场中的电介质按照物体导电特性区分,导电性相对导体很差的物体称为电介质(绝缘体)。从微观上看,电介质不存在自由电子,电子都束缚在原子的内部——处于束缚态。实验表明,处于静电场作用下的电介质,会产生极化现象,即介质表面会出现宏观电荷积累。但这不同于导体的静电感应,因为导体中的自由电子可以“自由运

动”,直至静电平衡出现,而电介质

中的束缚电子不可能摆脱原子的束缚。§18.1电介质对电场的影响

电介质对电场的影响相对电容率相对电容率电容率+++++++-------+++++++-------§18.2电介质的极化

无极分子:(氢、甲烷、石蜡等)有极分子:(水、有机玻璃等)

电介质:内部几乎没有可以自由运动电荷的物体,又称为绝缘体电介质的极化

处于外电场的电介质上,出现宏观电荷积累的现象称为电介质的极化,宏观电荷称为极化电荷或束缚电荷。

1.无极分子的极化*无极分子的极化是由于分子中的正负电荷中心在外电场作用下发生相对位移的结果----位移极化诱导电偶极矩二电介质的极化

2.有极分子的极化*有极分子的极化是由于分子偶极子在外电场的作用下发生转向的结果----转向极化(1).无外场时:电介质中任一小体积元

V内所有分子的电矩矢量和为零,即(2).有外场时:电介质被极化,,且外场越强,电介质极化程度越高,越大电极化强度

(3).定义:单位体积内分子电矩的矢量和为电极化强度,即----反映了电介质的极化程度(4).单位:库仑/米2(C/m2),与电荷面密度的单位相同

a.是所选小体积元

V内一点的电极化强度。当电介质中各处的电极化强度的大小和方向均相同时,则称为均匀极化b.极化(束缚)电荷也会激发电场,使电场的分布发生变化讨论:

极化强度与束缚电荷面密度的关系:电极化强度与束缚电荷的关系——介质表面的外法线单位矢量。证明

极化强度对任意闭合面的通量与面内束缚电荷的关系:

证明:返回四极化电荷与自由电荷的关系+++++++++++----------------++++++++++++++++----------------+++++电极化率§18.3的高斯定理

介质中的静电场介质中某点的场强,是由外电场和极化电荷的电场叠加而成

以两块靠得很近的金属板为例

有介质时的高斯定理电位移矢量1.由高斯定理有

----电位移矢量----有介质时的高斯定理或的高斯定理2.定义:讨论:自由电荷a.电位移通量只与闭合曲面所包围的自由电荷有关,但本身与自由电荷和极化电荷都有关

b.可用电位移线来形象地描述电位移

线

线

线与线的区别:

c.线:从自由正电荷或束缚正电荷出发,终止于负电荷.d.线:从自由正电荷出发,终止于自由负电荷.

三矢量的关系定义:----介质的介电常数

是一个辅助物理量,没有明显的物理意义,但有介质时,计算通量比计算通量简便说明:

以上讨论的是各向同性介质,方向一致[例1]半径为

a的导体球,带电荷

Q,外部有一内、外径分别为

b和

c,相对介电常数为

er

的均匀各向同性电介质。求各处的场强分布和介质内外表面束缚面电荷密度。

解:利用的

Gauss定理求

:利用求

,用

:束缚面电荷密度

例2

图中是由半径为R1的长直圆柱导体和同轴的半径为R2的薄导体圆筒组成,其间充以相对电容率为

r的电介质.设直导体和圆筒单位长度上的电荷分别为+

和-

.求(1)电介质中的电场强度、电位移和极化强度;(2)电介质内外表面的极化电荷面密度.解(1)r(2)r§18.4电容器和它的电容

一孤立导体的电容单位:

孤立导体的电容为孤立导体所带电荷Q与其电势V的比值.例

球形孤立导体的电容

地球二电容器按形状:柱型、球型、平行板电容器按型式:固定、可变、半可变电容器按介质:空气、塑料、云母、陶瓷等特点:非孤立导体,由两极板组成1电容器的分类2

电容器的电容

电容器的电容为电容器一块极板所带电荷Q与两极板电势差的比值.

电容的大小仅与导体的形状、相对位置、其间的电介质有关,与所带电荷量无关.注意

电容的意义:在电势差一定的条件下,电容越大,储存电荷的能力就越强。这个能力只决定于两导体的大小、形状、相对位置等因素。3

电容器电容的计算(1)设两极板分别带电

Q

(3)求两极板间的电势差U步骤(4)由C=Q/U求C(2)求两极板间的电场强度例1

平行平板电容器解++++++------例2圆柱形电容器设两圆柱面单位长度上分别带电

解++++----++++----平行板电容器电容++++----++++----例3球形电容器的电容设内外球壳分别带电

Q++++++++解孤立导体球电容++++++++三

电容器的并联和串联1电容器的并联2电容器的串联++[例1]一平行板电容器,极板面积为

S,两板相对表面的间距为

d,今在极板间插入一块相对介电常数为

er

、厚度为

t(t<d)

的均匀各向同性介质。求:插入介质后电容器的电容;如果插入同样厚度金属板,结果如何?(忽略边缘效应)

解:设两极板带电量

Q

,则介质外

介质内导体板外

导体板内插入金属板时:

例2.电容为C的空气平板电容器,两极板间距离为d,若在此电容器中插入一相对介电系数为

r的纸片,这时电容器的电容变为C’,试证纸片厚度为

证:设极板面积为S

得证*另证同样可证§18.5电容器的能量

考察电容的充电过程:

充电过程的实质,是把正电荷从电势低的负极板移到电势高的正极板,静电场力做负功。因此外力必须克服静电场力对电荷做功,使电容器获得能量并储存在电容器中。

电容器的能量是指:电容器上电荷建立的过程中外力克服静电场力对电荷所做的功。[例1]一平空气行板电容器,电容为

C0

,接入充电电路充电至电压为

U,此后(1)保持电路接通;(2)断开电路。今在极板间插入一块相对介电常数为

er

的均匀各向同性介质,使介质充满极板间隙。求此过程中外力所做的功。

解:无介质时电容器的储能

W0

为插入介质后电容器的电容变为

(1)电路接通,U不变,插入介质后电容器的能量为

(2)电路断开,Q不变,插入介质后电容器的能量为

电场的能量1.以平板电容器为例:设极板面积为S,两极板间距离为d,板间充满介电常数为

的电介质2.单位体积的能量(电场能量密度)为

3.任意电场中所储存的能量为讨论:

电场具有能量是电场物质性的一种表现介质的总能量密度的普遍表达式:对任意电场和任意介质普遍成立有介质时总电场的能量密度介质中束缚电荷的静电能密度[例1]求半径为

R,带电量为

Q的导体球所产生电场的能量。

解:导体外电场强度分布为半径为

r

r+dr的球壳内的电场能量为

[例2]半径为R的金属球带有正电荷q0,置于一均匀无限大的电介质中(相对介电常数为

r),求球外的电场分布,极化电荷分布和极化电荷电量解:

电场分布球对称性取半径为r并与金属球同心的球面S为高斯面

方向沿径向向外或a.电介质中的电场分布为

b.极化强度为c.球与介质交界处,介质表面的法向与该处极化强度的方向相反

d.极化电荷电量为----q'与q0反号,而且数值小于q0本章结束

TheEndofThisChapter课后作业:教材:p.85:

2,10,11,16,19,21,22,23辅导精析:p.172:8,14,15,18教材§19.1-§19.4预习:

[例3]空气平板电容器的极板面积为S,极板间距为d,其中插入一块厚度为d’的平行铜板。现在将电容器充电到电势差为U,切断电源后再将铜板抽出。求抽出铜板时外力所作的功外力的功等于抽出铜板前后该电容器电能的增量解:法1:电容储存能量的观点:

1.抽出铜板前电容器电容为极板上的电荷不变

2.抽出铜板后电容为

法2:电场是能量携带者的观点:铜板抽出前后,空气中场强不变,即电场能量密度不变,但电场存在的空间体积增大例4.一平板电容器有两层介质,相对介电常数分别为和

,厚度分别为d1=2mm和d2=3mm,极板面积为S=50cm2,两极板间电压为U=200V,求:(1)每层介质中场强的大小;(2)每层介质中的电场能量密度及能量;(3)电容器的总能量。

解:如图(1)因E1d1+E2d2=U

(1) 又D1=D2

,即从而得

(2)将(2)式代入(1)式得故得同理可得(2)介质中电场能量密度及能量

(3)电容器的总能量例5.一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R1=2cm,R2=5cm,其间充满相对介质常数为εr

的各向同性、均匀电介质,电容器接在电压U=32V的电源上,(如图所示),试求距离轴线R=3.5cm处的A点的电场强度和A点与外筒间的电势差。

解:长为L的圆柱形电容器的电容为:

电容器带电量为:

由高斯定理可得A点场强大小为:于是A点与外筒间的电势差为:例6.一空气平行板电容器,两极板面积均为S,板间距离为d(d远小于极板线度),在两极板间平行地插入一面积也是S,厚度为t(t<d)的金属片。试求(1)电容C等于多少?(2)金属片放在两极板间的位置对电容值有无影响?解:AC可看成是AB和BC的串联。设BC=x,则有例7.厚度为d的“无限大”均匀带电导体板两表面单位面积上电荷之和为s

.试求图示离左板面距离为a的一点与离右板面距离为b的一点之间的电势差.

解:选坐标如图.由高斯定理,平板内、外的场强分布为:

E=0(板内)

(板外)

1、2两点间电势差

例8.一平行板电容器的极板面积为S=1m2,两极板夹着一块d=5mm厚的同样面积的玻璃板.已知玻璃的相对介电常量为

。电容器充电到电压U=12V以后切断电源。求把玻璃板从电容器中抽出来外力需做多少功。(真空介电常量e

0=8.85×10-12C2·N-1·m-2)解:玻璃板抽出前后电容器能量的变化即外力作的功.抽出玻璃板前后的电容值分别为撤电源后再抽玻璃板.板上电荷不变,但电压改变,即

抽玻璃板前后电容器的能量分别为外力作功

=2.55×10-6J

[例9]两带等量异号电荷的导体板平行靠近放置,电荷面密度分别为+

和-

,板间电压V0=300V。如保持两板电量不变,将板间的一半空间充以相对介电系数

r=4的电介质,则板间电压为多少?介质上下表面极化电荷面密度多大?解:设板面积为S,板间距离为d

a.未放电介质:板间场强大小和电压为b.充电介质:作底面积为

S的高斯面同理,对右半部有两侧电势相等

因导体板上总电量保持不变解得

c.板间电场强度为上表面下表面平板电容器电荷面密度为

面积为S

极板相距d。问:不接电源将介电常数为

均匀

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论