![北师大版九年级数学上册基础知识专项讲练 专题1.5 矩形的性质与判定(知识讲解)_第1页](http://file4.renrendoc.com/view11/M02/38/0F/wKhkGWXh_22AU2YDAAJ2UuhR09g947.jpg)
![北师大版九年级数学上册基础知识专项讲练 专题1.5 矩形的性质与判定(知识讲解)_第2页](http://file4.renrendoc.com/view11/M02/38/0F/wKhkGWXh_22AU2YDAAJ2UuhR09g9472.jpg)
![北师大版九年级数学上册基础知识专项讲练 专题1.5 矩形的性质与判定(知识讲解)_第3页](http://file4.renrendoc.com/view11/M02/38/0F/wKhkGWXh_22AU2YDAAJ2UuhR09g9473.jpg)
![北师大版九年级数学上册基础知识专项讲练 专题1.5 矩形的性质与判定(知识讲解)_第4页](http://file4.renrendoc.com/view11/M02/38/0F/wKhkGWXh_22AU2YDAAJ2UuhR09g9474.jpg)
![北师大版九年级数学上册基础知识专项讲练 专题1.5 矩形的性质与判定(知识讲解)_第5页](http://file4.renrendoc.com/view11/M02/38/0F/wKhkGWXh_22AU2YDAAJ2UuhR09g9475.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题1.5矩形的性质与判定(知识讲解)【学习目标】1.理解矩形的概念;2.掌握矩形的性质定理与判定定理;3.掌握直角三角形斜边上的中线等于斜边一半;4.能力要求:利用矩形的性质解决折叠问题、最值问题、坐标系下的矩形问题。【要点梳理】要点一、矩形的定义有一个角是直角的平行四边形叫做矩形.特别说明:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.要点二、矩形的性质矩形的性质包括四个方面:1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.特别说明:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.要点三、矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.特别说明:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.要点四、直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.特别说明:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.【典型例题】类型一、矩形性质的理解1.已知,如图,四边形ABCD是矩形,AD>AB.(1)请用无刻度的直尺和圆规在AD上找一点E,使得EC平分∠BED;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,若AB=3,DE=1,求△BEC的面积.【答案】(1)见分析(2)△BEC的面积为7.5.【分析】(1)以B为圆心,BC长为半径画弧交AD于点E即可;(2)由(1)可得BC=BE,设BC=x,则AE=x-1,根据勾股定理即可求出x,进而求出△BEC的面积.(1)解:如图,以B为圆心,BC长为半径画弧交AD于点E;(2)解:由(1)可知BC=BE,设BC=x,则AE=x-1,在△ABE中,∠A=90°,∴AB2+AE2=BE2,故32+(x-1)2=x2,解得x=5,∴△BEC的面积为×5×3=7.5.【点拨】本题考查了作图-复杂作图、矩形的性质、平行线的性质、等腰三角形的性质,解决本题的关键是掌握矩形的性质.【变式1】矩形具有而菱形不一定具有的性质是(
)A.两组对边分别平行 B.对角线相等C.对角线互相垂直 D.对角线平分一组对角【答案】B【分析】根据矩形和菱形的性质得出即可.解:A.因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的两组对边分别平行,故A不符合题意;B.矩形的对角线相等,而菱形不是,故B符合题意;C.菱形的对角线对角线互相垂直,而矩形不是,故C不符合题意;D.菱形的对角线平分对角,而矩形不是,故D不符合题意;故选:B.【点拨】本题考查了矩形与菱形的性质,解题的关键是熟练掌握矩形与菱形的性质.【变式2】如图,在五边形ABCDE中,,,,连接CE,BD.若且,则的面积为______.【答案】【分析】作出BC边上的垂线DF和EG,DF无法直接计算,DF是△CDF的一条边,而△EGC和△CDF已有边CE=CD,∠EGC=∠CFD=90°,若两三角形全等便可求出DF的长.解:如下图过E作EG⊥BC于G,过D作DF⊥BC延长线于F,∵∠A=∠ABC=90°,EG⊥BC,∴ABGE是矩形,BG=AE=,∴CG=BC-BG=6-=,∵CE⊥CD,∴∠ECG+∠DCF=90°,∵∠ECG+∠CEG=90°,∴∠CEG=∠DCF,∵CE=DC,∠EGC=∠CFD,∴△EGC≌△CFD(AAS),∴DF=CG=,S△BCD=×6×=,故答案为:.【点拨】本题考查全等三角形的判定,矩形的性质和判定,三角形的面积计算,正确作出辅助线找出高与已知条件的关系是解题的关键.类型二、利用矩形的性质求角2.如图,四边形ABCD中,对角线AC、BD相交于点O,,,且∠ABC=90°.(1)求证:四边形ABCD是矩形.(2)若∠ACB=30°,AB=1,求①∠AOB的度数;②四边形ABCD的面积.【答案】(1)见分析;(2)①60°,②.【分析】(1)根据AO=CO,BO=DO可知四边形ABCD是平行四边形,又∠ABC=90°,可证四边形ABCD是矩形(2)利用直角△ABC中∠ABC=90°,∠ACB=300,可得∠BAC=60°,AC=2,BC=,即可求得四边形ABCD的面积,同时利用矩形的性质,对角线相等且互相平分,可得∠AOB=180°-2∠BAC解:(1)∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC=90°,∴四边形ABCD是矩形;(2)∵∠ABC=90°,∠ACB=300,AB=1∴∠BAC=60°,AC=2,BC=又∵矩形ABCD中,OA=OB∴∠AOB=180°-2∠BAC=60°S□ABCD=1×=【点拨】本题考查了矩形的判定及性质定理的应用,会灵活运用是解题的关键.【变式1】如图,在矩形中,对角线与相交于点,若,那么的度数是(
)A. B. C. D.【答案】D【分析】根据题意只要证明OA=OD,根据三角形的外角的性质即可解决问题.解:∵矩形ABCD中,对角线AC,BD相交于点O,∴DB=AC,OD=OB,OA=OC,∴OA=OD,∴∠CAD=∠ADO,∵∠COD=50°=∠CAD+∠ADO,∴∠CAD=25°,故选D.【点拨】本题考查了矩形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式2】如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.【答案】22.5°解:四边形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.类型三、利用矩形的性质求线段3.如图,在矩形中,点在上,,且,垂足为.(1)求证:;(2)若,求四边形的面积.【答案】(1)见详解;(2)4-8【分析】(1)由矩形的性质可得∠D=90°,AB∥CD,从而得∠D=∠ANB,∠BAN=∠AMD,进而即可得到结论;(2)由以及勾股定理得AN=DM=4,AB=,进而即可求解.解:(1)∵在矩形中,∴∠D=90°,AB∥CD,∴∠BAN=∠AMD,∵,∴∠ANB=90°,即:∠D=∠ANB,又∵,∴(AAS),(2)∵,∴AN=DM=4,∵,∴,∴AB=,∴矩形的面积=×2=4,又∵,∴四边形的面积=4-4-4=4-8.【点拨】本题主要考查矩形的性质,勾股定理,全等三角形的判定和性质,熟练掌握AAS证明三角形全等,是解题的关键.【变式1】如图,点O是矩形ABCD的对角线AC的中点,OM//AB交AD于点M,若OM=3,BC=10,则OB的长为(
)A.5 B.4 C. D.【答案】D【分析】如图所示,连接OD,先求出,然后利用勾股定理求解即可.解:如图所示,连接OD,∵四边形ABCD是矩形,∴OA=OD,∠BAD=90°,∵OM∥AB,∴∠OMD=90°,∴,∴故选D.【点拨】本题主要考查了矩形的性质,等腰三角形的性质与判定,勾股定理,正确作出辅助线是解题的关键.【变式2】如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为______.【答案】【分析】首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.解:设△ABP中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值为.故答案为:.【点拨】本题考查了轴对称——最短路线问题、三角形的面积、矩形的性质、勾股定理和两点之间线段最短的性质,其中得出动点P所在的位置是解题的关键.类型四、利用矩形的性质求面积4.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.【答案】(1)证明见分析;(2)矩形ABCD的面积为【分析】(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC的长,即可得出矩形ABCD的面积.解:(1)∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=DF,∴OE=OF,在△AOE和△COF中,∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF;(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt△ABC中,BC==6,∴矩形ABCD的面积=AB•BC=6×6=36.【点拨】此题考查了矩形的性质,等边三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握矩形的性质,等边三角形的性质和判定,勾股定理的运用.【变式1】如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18【答案】C【分析】首先根据矩形的特点,作PM⊥AD于M,交BC于N,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP=S矩形MPFD,即可得S△PEB=S△PFD,从而得到阴影的面积.解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP=S矩形MPFD,又∵S△PBE=S矩形EBNP,S△PFD=S矩形MPFD,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,故选:C.【点拨】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.【变式2】如图,矩形ABCD中,E、F分别为AD、AB上一点,且EF=EC,EF⊥EC,若DE=2,矩形周长为16,则矩形ABCD的面积为_________【答案】15解:因为EF⊥EC,所以∠FEC=90°,所以∠AEF+∠DEC=90°,因为∠AEF+∠AFE=90°,所以∠AFE=∠DEC,因为∠A=∠D,EF=CE,所以△AEF≌△DCE,所以AE=CD,AF=DE,设AB=CD=x,则AD=AE+DE=CD+DE=x+2,所以2(x+x+2)=16,解得x=3,所以AB×BC=3×(3+2)=15,故答案为15.类型五、利用矩形的性质和判定证明5.如图,矩形ABCD的对角线相交于点O,DE//AC,CE//BD,求证:四边形OCED是菱形.【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.解:∵DE//AC,CE//BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OC=OD=AC=BD∴四边形OCED是菱形.【变式1】如图,矩形的对角线与交于点,过点作的垂线分别交、于、两点,若,,则的长度为(
)A.1 B.2 C. D.【答案】B【分析】根据三角形外角性质可求出∠EDO=30°,从而可求出∠DEO=60°,再根据矩形的性质,推理得到OF=CF,最后在Rt△BOF中利用勾股定理求得OF的长,即可得到CF的长.解:∵EF⊥BD,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°-30°=30°,BF=2OF,∴OF=CF,又∵BO=BD=AC=2,∴在Rt△BOF中,BO2+OF2=(2OF)2,∴(2)2+OF2=4OF2,∴OF=2,∴CF=2,故选:B.【点拨】本题主要考查了三角形外角的性质,矩形的性质,含30°角的直角三角形的性质以及勾股定理的运用,解决问题的关键是掌握矩形的对角线相等且互相平分.【变式2】如图,矩形ABCD中,,点Q在对角线AC上,且,连接DQ并延长,与边BC交于点P,则线段AP=_________.【答案】解:∵矩形ABCD中,AB=4,AD=3=BC,∴AC=5,又∵AQ=AD=3,ADCP,∴CQ=5-3=2,∠CQP=∠AQD=∠ADQ=∠CPQ,∴CP=CQ=2,∴BP=3-2=1,∴Rt△ABP中,AP=故答案为:类型六直角三角形斜边上中线问题6.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【答案】(1)证明见分析;(2)【分析】(1)在△CAD中,由中位线定理得到MN∥AD,且MN=AD,在Rt△ABC中,因为M是AC的中点,故BM=AC,即可得到结论;(2)由∠BAD=60°且AC平分∠BAD,得到∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,得到∠BMC=60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到,再由MN=BM=1,得到BN的长.解:(1)在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,且MN=AD,在Rt△ABC中,∵M是AC的中点,∴BM=AC,又∵AC=AD,∴MN=BM;(2)∵∠BAD=60°且AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴,而由(1)知,MN=BM=AC=×2=1,∴BN=.【变式1】如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20° B.25° C.30° D.40°【答案】A【分析】先根据菱形的性质得OD=OB,AB∥CD,BD⊥AC,则利用DH⊥AB得到DH⊥CD,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数.解:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCA,∵四边形ABCD是菱形,∴DA=DC,∴∠CAD=∠DCA=20°,∴∠DHO=20°,故选A.【点拨】本题考查菱形的性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式2】如图,平行四边形中,于,点为边中点,,,则_________【答案】【分析】延长、交于点,连接FC,先依据全等的判定和性质得到,依据直角三角形斜边上的中线等于斜边的一半,得到,依据平行四边形的对边相等及等量代换得到,依据三角形等边对等角得到、,依据三角形内角和得到,通过作差即得所求.解:延长、交于点,连接FC,∵平行四边形中,∴,,,∴,,,又∵点为边中点,得,∴≌(ASA),,∴,∴,∴,∴,∵,,,,∴,∴,∴,∴,故答案为:.【点拨】本题考查了平行四边形的性质、全等的判定和性质、直角三角形斜边上的中线等于斜边的一半、三角形等边对等角、三角形内角和,解题的关键是构造直角三角形.类型七、矩形性质与判定定理的理解7.如图,,且,是的中点.(1)求证:四边形是平行四边形;(2)连接、,写出添加一个什么条件时,四边形是矩形.并说明理由.【答案】(1)证明见分析;(2)添加,理由见分析.【分析】(1)证明,结合已知条件,利用一组对边平行且相等的四边形是平行四边形,即可得到结论;(2)由矩形的性质逆推出要添加的条件,再根据添加的条件证明四边形是矩形即可得到答案.解:(1)∵是中点,∴.∵,∴.又∵,∴四边形是平行四边形.(2)解:添加,理由如下:连接、,如图,∵,,∴四边形是平行四边形.∵,,∴.∴四边形是矩形.【点拨】本题考查的是平行四边形的性质,矩形的判定,掌握以上知识是解题的关键.【变式1】下列命题正确的是(
)A.有一个角是直角的平行四边形是矩形 B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形【答案】A【分析】运用矩形的判定定理,即可快速确定答案.解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点拨】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.【变式2】如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快___s后,四边形ABPQ成为矩形.【答案】4【分析】设最快x秒,当BP=AQ时,四边形ABPQ成为矩形,设最快x秒,则4x=20﹣2x.解方程可得.解:设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=4.故答案为4【点拨】本题考核知识点:平行四边形性质,矩形判定.解题关键点:熟记平行四边形性质,矩形判定.类型八、添加一个条件构成矩形8.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.【答案】(1)见分析(2)①1;②2【分析】(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.解:(1)∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=AD,∵点E是AD边的中点,∴DE=AE=AM=1,∵∠DAM=60°,∴ME=DE=AM,∴∠ADM=∠EMD,∠AEM=60°,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形;②当AM的值为2时,四边形AMDN是菱形.理由如下:∵AM=2,∴AM=AD=2,∠DAM=60°,∴△AMD是等边三角形,∴AM=DM,∴平行四边形AMDN是菱形.【变式1】已知中,下列条件:①;②;③;④平分,其中能说明是矩形的是(
)A.① B.② C.③ D.④【答案】B【分析】根据矩形的判定进行分析即可.解:A.,邻边相等的平行四边形是菱形,故A错误;B.,对角线相等的平行四边形是矩形,故B正确;C.,对角线互相垂直的平行四边形是菱形,故C错误;D.平分,对角线平分其每一组对角的平行四边形是菱形,故D错误.故选:B.【点拨】本题考查了矩形的判定,熟知矩形从边,角,对角线三个方向的判定是解题的关键.【变式2】如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件_____,使四边形ABCD为矩形.【答案】∠B=90°【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.解:∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【点拨】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.类型九、证明四边形是矩形9.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【答案】(1)证明见分析;(2).【分析】(1)根据矩形ABCD的性质,判定△BOE≌△DOF(ASA),进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.解:(1)∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,BD⊥EF,设BE=x,则
DE=x,AE=6-x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6-x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点拨】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键【变式1】如图,在△ABC中,点D在BC上,,下列四个判断中不正确的是(
)A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形【答案】C【分析】根据题意,分别利用平行四边形及矩形,菱形的判定定理依次判断即可得.解:A选项,∵在△ABC中,点D在BC上,,∴,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,∵添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,∵由添加的条件“AB=AC,AD⊥BC”,∴AD平分∠BAC,∴∠EAD=∠CAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形,所以D正确.故选C.【点拨】题目主要考查平行四边形及矩形,菱形的判定定理,熟练掌握各个判定定理是解题关键.【变式2】如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有_____________(填序号).【答案】①②④【分析】根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵根据折叠可得∠D=∠NMA,∴∠B=∠NMA,∴MN∥BC;①正确;∵四边形ABCD是平行四边形,∴DN∥AM,AD∥BC,∵MN∥BC,∴AD∥MN,∴四边形AMND是平行四边形,根据折叠可得AM=DA,∴四边形AMND为菱形,∴MN=AM;②④正确;没有条件证出∠B=90°,④错误;故答案为①②④.【点拨】本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.类型十、利用矩形的性质与判定求角度10.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见分析;(2)∠BDF=18°.【分析】(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.解:(1)∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【点拨】本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.【变式1】如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(
)A.68° B.20° C.28° D.22°【答案】D解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.【变式2】如图,在矩形ABCD中,AE⊥BD.若DE:BE=3:1,则∠EAO=__________.【答案】30°解:根据∠DAE:∠BAE=3:1以及∠DAE+∠BAE=90°可得:∠DAE=67.5°,根据AE⊥BD可得:∠ADE=22.5°,根据OA=OD可得:∠OAD=∠ADO=22.5°,则∠EAO=∠DAE-∠DAO=67.5°-22.5°=45°.类型十一、利用矩形的性质与判定求线段11.如图,在中,于点E点,延长BC至F点使,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若,,,求AE的长.【答案】(1)见分析;(2)【分析】(1)先证明四边形AEFD是平行四边形,再证明∠AEF=90°即可.(2)证明△ABF是直角三角形,由三角形的面积即可得出AE的长.解:(1)∵CF=BE,∴CF+EC=BE+EC.即
EF=BC.∵在▱ABCD中,AD∥BC且AD=BC,∴AD∥EF且AD=EF.∴四边形AEFD是平行四边形.∵AE⊥BC,∴∠AEF=90°.∴四边形AEFD是矩形;(2)∵四边形AEFD是矩形,DE=8,∴AF=DE=8.∵AB=6,BF=10,∴AB2+AF2=62+82=100=BF2.∴∠BAF=90°.∵AE⊥BF,∴△ABF的面积=AB•AF=BF•AE.∴AE=.【变式1】如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.8 B.8 C.4 D.6【答案】D【分析】连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故选D.【点拨】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.【变式2】如图,在矩形中,,对角线与相交于点,,垂足为点,且平分,则的长为_____.【答案】.【分析】由矩形的性质可得AO=CO=BO=DO,可证△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AB的长.解:∵四边形是矩形∴,∵平分∴,且,,∴≌()∴,且∴,∴,∵,∴,∴故答案为.【点拨】本题考查了矩形的性质,全等三角形的判定和性质,勾股定理,熟练运用矩形的性质是本题的关键.类型十二、利用矩形的性质与判定求面积12.如图,在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代科技在中药植物油提取中的绿色环保策略
- 生活用纸设计新趋势创新驱动的消费者体验升级
- 生态保护与零碳公园规划的融合实践
- 国庆节活动方案活动内容
- 现代服务业的绿色发展路径探索
- 小学劳动教育考核方案
- 2024年五年级英语下册 Unit 7 Chinese festivals第6课时说课稿 译林牛津版
- 2024年秋七年级历史上册 第14课 沟通中外文明的“丝绸之路”说课稿 新人教版
- Unit 3 My friends Read and write(说课稿)-2024-2025学年人教PEP版英语四年级上册
- 3 我不拖拉 第一课时(说课稿)2023-2024学年统编版道德与法治一年级下册
- 房地产工程管理 -中建八局机电工程质量通病治理办法
- GB/T 6403.4-2008零件倒圆与倒角
- GB/T 2518-2019连续热镀锌和锌合金镀层钢板及钢带
- 企业合规管理-课件
- 火电厂安全工作规程
- GB∕T 33047.1-2016 塑料 聚合物热重法(TG) 第1部分:通则
- 电力业务许可证豁免证明
- 特发性肺纤维化IPF
- FIDIC国际合同条款中英文对照.doc
- 建筑工程资料归档立卷分类表(全)
- 个人劳动仲裁申请书
评论
0/150
提交评论