山东省聊城市城区2023年九年级数学第一学期期末质量检测模拟试题含解析_第1页
山东省聊城市城区2023年九年级数学第一学期期末质量检测模拟试题含解析_第2页
山东省聊城市城区2023年九年级数学第一学期期末质量检测模拟试题含解析_第3页
山东省聊城市城区2023年九年级数学第一学期期末质量检测模拟试题含解析_第4页
山东省聊城市城区2023年九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省聊城市城区2023年九年级数学第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,反比例函数y=(x>0)的图象经过Rt△BOC斜边上的中点A,与边BC交于点D,连接AD,则△ADB的面积为()A.12 B.16 C.20 D.242.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.(54+10)cm B.(54+10)cm C.64cm D.54cm3.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=34.如图,在△ABC中,点D,E分别在边AB,AC上,且,则S△ADE:S四边形BCED的值为()A.1: B.1:3 C.1:8 D.1:95.下列几何图形中,是中心对称图形但不是轴对称图形的是()A.圆 B.正方形 C.矩形 D.平行四边形6.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确的是()A.△AOD∽△BOC B.△AOB∽△DOCC.CD=BC D.BC•CD=AC•OA7.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4则四边形DBCE的面积是()A.6 B.9 C.21 D.258.下列方程中,是一元二次方程的是()A. B.C. D.9.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=-n2+15n-36,那么该企业一年中应停产的月份是()A.1月,2月 B.1月,2月,3月 C.3月,12月 D.1月,2月,3月,12月10.如图,将△ABC绕着点A顺时针旋转30°得到△AB′C′,若∠BAC′=80°,则∠B′AC=()‘A.20° B.25° C.30° D.35°11.如图,的半径等于,如果弦所对的圆心角等于,那么圆心到弦的距离等于()A. B. C. D.12.对于二次函数的图象,下列说法正确的是()A.开口向下 B.顶点坐标是C.对称轴是直线 D.与轴有两个交点二、填空题(每题4分,共24分)13.抛物线的部分图象如图所示,对称轴是直线,则关于的一元二次方程的解为____.14.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是

________.15.如图,在正方形和正方形中,点和点的坐标分别为,,则两个正方形的位似中心的坐标是___________.16.将二次函数化成的形式为__________.17.过⊙O内一点M的最长弦为10cm,最短弦为8cm,则OM=cm.18.若a、b、c、d满足ab=cd=三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像在第二象限交于点,与轴交于点,点在轴上,满足条件:,且,点的坐标为,。(1)求反比例函数的表达式;(2)直接写出当时,的解集。20.(8分)近年来,在总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霸天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度的统计图对雾霾天气了解程度的统计图对雾霾天气了解程度的统计表对雾霾天气了解程度百分比A.非常了解5%B.比较了解15%C.基本了解45%D.不了解请结合统计图表,回答下列问题:(1)本次参与调查的学生共有______人,______;(2)请补全条形统计图;(3)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为奇数,则小明去,否则小刚去,请用画树状图或列表说明这个游戏规则是否公平.21.(8分)已知抛物线的对称轴为直线,且经过点(1)求抛物线的表达式;(2)请直接写出时的取值范围.22.(10分)如图,△ABC的边BC在x轴上,且∠ACB=90°.反比例函数y=(x>0)的图象经过AB边的中点D,且与AC边相交于点E,连接CD.已知BC=2OB,△BCD的面积为1.(1)求k的值;(2)若AE=BC,求点A的坐标.23.(10分)“共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士.如图是四位院士(依次记为、、、).为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上、、、四个标号,然后背面朝上放置,搅匀后每个同学从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料,并做成小报.(1)班长在四种卡片中随机抽到标号为C的概率为______.(2)请用画树状图或列表的方法求小明和小华查找不同院士资料的概率.24.(10分)(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P,求证:;(2)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证MN2=DM·EN.25.(12分)如图,点E,F,G,H分别位于边长为a的正方形ABCD的四条边上,四边形EFGH也是正方形,AG=x,正方形EFGH的面积为y.(1)当a=2,y=3时,求x的值;(2)当x为何值时,y的值最小?最小值是多少?26.我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件设每件童装降价x元时,平均每天可盈利y元.写出y与x的函数关系式;当该专卖店每件童装降价多少元时,平均每天盈利400元?该专卖店要想平均每天盈利600元,可能吗?请说明理由.

参考答案一、选择题(每题4分,共48分)1、A【解析】过A作AE⊥OC于E,设A(a,b),求得B(2a,2b),ab=16,得到S△BCO=2ab=32,于是得到结论.【详解】过A作AE⊥OC于E,设A(a,b),∵当A是OB的中点,∴B(2a,2b),∵反比例函数y=(x>0)的图象经过Rt△BOC斜边上的中点A,∴ab=16,∴S△BCO=2ab=32,∵点D在反比例函数数y=(x>0)的图象上,∴S△OCD=16÷2=8,∴S△BOD=32﹣8=24,∴△ADB的面积=S△BOD=12,故选:A.【点睛】本题主要考查反比例函数的图象与三角形的综合,掌握反比例函数的比例系数k的几何意义,添加合适的辅助线,是解题的关键.2、C【分析】过A作AE⊥CP于E,过B作BF⊥DQ于F,则可得AE和BF的长,依据端点A与B之间的距离为10cm,即可得到可以通过闸机的物体的最大宽度.【详解】如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选C.【点睛】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.3、D【分析】根据因式分解法解一元二次方程,即可求解.【详解】∵x2﹣1x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,解得:x1=0,x2=1.故选:D.【点睛】本题主要考查一元二次方程的解法,掌握因式分解法解方程,是解题的关键.4、C【分析】易证△ADE∽△ABC,然后根据相似三角形面积的比等于相似比的平方,继而求得S△ADE:S四边形BCED的值.【详解】∵,∠A=∠A,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:9,∴S△ADE:S四边形BCED=1:8,故选C.【点睛】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.5、D【分析】根据中心对称图形和轴对称图形的定义逐一判断即可.【详解】A.圆是中心对称图形,也是轴对称图形,故本选项不符合题意;B.正方形是中心对称图形,也是轴对称图形,故本选项不符合题意;C.矩形是中心对称图形,也是轴对称图形,故本选项不符合题意;D.平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意.故选D.【点睛】此题考查的是中心对称图形和轴对称图形的识别,掌握中心对称图形和轴对称图形的定义是解决此题的关键.6、D【分析】直接利用相似三角形的判定方法分别分析得出答案.【详解】解:∵∠DAC=∠DBC,∠AOD=∠BOC,∴∽,故A不符合题意;∵∽,∴AO:OD=OB:OC,∵∠AOB=∠DOC,∴∽,故B不符合题意;∵∽,∴∠CDB=∠CAB,∵∠CAD=∠CAB,∠DAC=∠DBC,∴∠CDB=∠DBC,∴CD=BC;没有条件可以证明,故选D.【点睛】本题考查了相似三角形的判定与性质,解题关键在于熟练掌握相似三角形的判定方法①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.7、C【解析】∵DE//BC,∴△ADE∽△ABC,∴,∵AD=2,BD=3,AB=AD+BD,∴,∵S△ADE=4,∴S△ABC=25,∴S四边形DBCE=S△ABC-S△ADE=25-4=21,故选C.8、B【解析】根据一元二次方程的定义进行判断即可.【详解】A.属于多项式,错误;B.属于一元二次方程,正确;C.未知数项的最高次数是2,但不属于整式方程,错误;D.属于整式方程,未知数项的最高次数是3,错误.故答案为:B.【点睛】本题考查了一元二次方程的性质以及定义,掌握一元二次方程的定义是解题的关键.9、D【详解】当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D10、A【解析】根据图形旋转的性质,图形旋转前后不发生任何变化,对应点旋转的角度即是图形旋转的角度,可直接得出∠C′AC=30°,由∠BAC′=80°可得∠BAC=∠B′AC′=50°,从而可得结论.【详解】由旋转的性质可得,∠BAC=∠B′AC′,∵∠C′AC=30°,∴∠BAC=∠B′AC′=50°,∴∠B′AC=20°.故选A.【点睛】此题主要考查了旋转的性质,图形旋转前后不发生任何变化,这是解决问题的关键.11、C【分析】过O作OD⊥AB于D,根据等腰三角形三线合一得∠BOD=60°,由30°角所对的直角边等于斜边的一半求解即可.【详解】解:过O作OD⊥AB,垂足为D,∵OA=OB,∴∠BOD=∠AOB=×120°=60°,∴∠B=30°,∴OD=OB=×4=2.即圆心到弦的距离等于2.故选:C.【点睛】本题考查圆的基本性质及等腰三角形的性质,含30°角的直角三角形的性质,根据题意作出辅助线,解直角三角形是解答此题的关键.12、B【分析】根据二次函数基本性质逐个分析即可.【详解】A.a=3,开口向上,选项A错误B.顶点坐标是,B是正确的C.对称轴是直线,选项C错误D.与轴有没有交点,选项D错误故选:B【点睛】本题考核知识点:二次函数基本性质:顶点、对称轴、交点.解题关键点:熟记二次函数基本性质.二、填空题(每题4分,共24分)13、【分析】根据二次函数的性质和函数的图象,可以得到该函数图象与轴的另一个交点,从而可以得到一元二次方程的解,本题得以解决.【详解】由图象可得,

抛物线与x轴的一个交点为(1,0),对称轴是直线,

则抛物线与轴的另一个交点为(-3,0),

即当时,,此时方程的解是,

故答案为:.【点睛】本题考查了抛物线与轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.14、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,

=0.2,解得,n=1.故估计n大约有1个.故答案为1.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.15、或【分析】根据位似变换中对应点的坐标的变化规律,分两种情况:一种是当点E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.【详解】∵正方形和正方形中,点和点的坐标分别为,∴(1)当点E和C是对应顶点,G和A是对应顶点,位似中心就是EC与AG的交点.设AG所在的直线的解析式为解得∴AG所在的直线的解析式为当时,,所以EC与AG的交点为(2)A和E是对应顶点,C和G是对应顶点.,则位似中心就是AE与CG的交点设AE所在的直线的解析式为解得∴AE所在的直线的解析式为设CG所在的直线的解析式为解得∴AG所在的直线的解析式为联立解得∴AE与CG的交点为综上所述,两个正方形的位似中心的坐标是或故答案为或【点睛】本题主要考查位似图形,涉及了待定系数法求函数解析,求位似中心,正确分情况讨论是解题的关键.16、【分析】利用配方法整理即可得解.【详解】解:,所以.故答案为.【点睛】本题考查了二次函数的解析式有三种形式:(1)一般式:为常数);(2)顶点式:;(3)交点式(与轴):.17、3【解析】试题分析:最长弦即为直径,最短弦即为以M为中点的弦,所以此时考点:弦心距与弦、半径的关系点评:18、3【解析】根据等比性质求解即可.【详解】∵ab∴a+cb+d=a故答案为:34【点睛】本题考查了比例的性质,主要利用了等比性质.等比性质:在一个比例等式中,两前项之和与两后项之和的比例与原比例相等.对于实数a,b,c,d,且有b≠0,d≠0,如果ab=c三、解答题(共78分)19、(1);(2)【解析】(1)过点B作BH⊥x轴于点H,证明≌得到BH与CH的长度,便可求得B点的坐标,进而求得反比例函数解析式;(2)观察函数图象,当一次函数图象在反比例函数图象下方时的自变量x的取值范围便是结果.【详解】解:(1)如图作轴于点则∴∵点的坐标为∴∵∴,在和中有∴≌∴,∴,即∴∴反比例函数解析式为(2)因为在第二象限中,点右侧一次函数的图像在反比例函数图像的下方,所以当时,的解集为.【点睛】本题考查了反比例函数和一次函数的交点问题,熟练掌握函数解析式的求法以及利用数形结合根据函数图象的上下位置关系得出不等式的解集是重点.20、(1)400,35%;(2)条形统计图见解析;(3)不公平.【分析】(1)用A等级的人数除以它所占的百分比可得调查的总人数,然后用1减去其它等级的百分比即可求得n的值;(3)先计算出D等级的人数,然后补全条形统计图即可;(4)通过树状图可确定12种等可能的结果,再找出和为奇数的结果有8种,再确定出为奇数的概率,再确定小明去和小刚去的概率,最后比较即可解答.【详解】解:(1)由统计图可知:A等级的人数为20,所占的百分比为5%则本次参与调查的学生共有20÷5%=400人;1-5%-15%-45%=35%;(2)由统计图可知:A等级的人数所占的百分比为45%D等级的人数为400×35%=140(人)补全条形统计图如下:(3)根据题意画出树状图如下:可发现共有12种等可能的结果且和为奇数的结果有8种所以小明去的概率为:小刚去的概率为:.由>.所以这个游戏规则不公平.【点睛】本题考查了游戏的公平性,先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平,这是解答游戏公平性题目的关键.21、(1);(2)或【分析】(1)利用对称轴方程可确定b=-2,把P点坐标代入二次函数解析式可确定c=-3,即抛物线解析式为;(2)根据抛物线的对称性和P(3,0)为x轴上的点,即可求出另一个点的交点坐标,画图,根据图象即可得出结论;【详解】解:(1)根据题意得,,解得,∴抛物线解析式为;(2)函数对称轴为x=1,而P(3,0)位于x轴上,则设与x轴另一交点坐标Q为(m,0),根据题意得:,解得m=−1,则抛物线与x轴的另一个交点Q坐标为(−1,0),由图可得,时的取值范围为:或;【点睛】本题主要考查了抛物线与x轴的交点,待定系数法求二次函数解析式,掌握抛物线与x轴的交点,待定系数法求二次函数解析式是解题的关键.22、(1)k=12;(2)A(1,1).【解析】(1)连接OD,过D作DF⊥OC于F,依据∠ACB=90°,D为AB的中点,即可得到CD=AB=BD,进而得出BC=2BF=2CF,依据BC=2OB,即可得到OB=BF=CF,进而得出k=xy=OF•DF=BC•DF=2S△BCD=12;(2)设OB=m,则OF=2m,OC=3m,DF=,进而得到E(3m,-2m),依据3m(-2m)=12,即可得到m=2,进而得到A(1,1).【详解】解:(1)如图,连接OD,过D作DF⊥OC于F,∵∠ACB=90°,D为AB的中点,∴CD=AB=BD,∴BC=2BF=2CF,∵BC=2OB,∴OB=BF=CF,∴k=xy=OF•DF=BC•DF=2S△BCD=12;(2)设OB=m,则OF=2m,OC=3m,DF=,∵DF是△ABC的中位线,∴AC=2DF=,又∵AE=BC=2m,∴CE=AC-AE=-2m,∴E(3m,-2m),∵3m(-2m)=12,∴m2=4,又∵m>0,∴m=2,∴OC=1,AC=1,∴A(1,1).【点睛】本题考查了反比例函数图象上点的坐标特征,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.23、(1);(2).【分析】(1)根据概率公式直接求解即可;(2)先画出树状图或列出表格,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:(1)1÷4=;(2)画出树状图如下:或列表如下:小明小华由上可知小明和小华随机各抽取一次卡片,一共有16种等可能情况,其中标号不同即查找不同院士资料的情况有12种,即,,,,,,,,,,,∴【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可.,即.24、(1)证明见解析;(2)①;②证明见解析.【分析】(1)易证明△ADP∽△ABQ,△ACQ∽△ADP,从而得出;(2)①根据等腰直角三角形的性质和勾股定理,求出BC边上的高,根据△ADE∽△ABC,求出正方形DEFG的边长.从而,由△AMN∽△AGF和△AMN的MN边上高,△AGF的GF边上高,GF=,根据MN:GF等于高之比即可求出MN;②可得出△BGD∽△EFC,则DG•EF=CF•BG;又DG=GF=EF,得GF2=CF•BG,再根据(1),从而得出结论.【详解】解:(1)在△ABQ和△ADP中,∵DP∥BQ,∴△ADP∽△ABQ,∴,同理在△ACQ和△APE中,,∴;(2)①作AQ⊥BC于点Q.∵BC边上的高AQ=,∵DE=DG=GF=EF=BG=CF∴DE:BC=1:3又∵DE∥BC∴AD:AB=1:3,∴AD=,DE=,∵DE边上的高为,MN:GF=:,∴MN:=:,∴MN=.故答案为:.②证明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论