




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试卷第=page22页,共=sectionpages22页资料整理【淘宝店铺:向阳百分百】试卷第=page11页,共=sectionpages11页资料整理【淘宝店铺:向阳百分百】中考数学几何专项练习:最值问题之阿氏圆一、填空题1.如图,正方形SKIPIF1<0的边长为4,SKIPIF1<0的半径为2,SKIPIF1<0为SKIPIF1<0上的动点,则SKIPIF1<0的最大值是.【答案】2【分析】解法1,如图:以SKIPIF1<0为斜边构造等腰直角三角形SKIPIF1<0,连接SKIPIF1<0,SKIPIF1<0,连接SKIPIF1<0、SKIPIF1<0,推得SKIPIF1<0,因为SKIPIF1<0,求出SKIPIF1<0即可求出答案.解法2:如图:连接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,在SKIPIF1<0上做点SKIPIF1<0,使SKIPIF1<0,连接SKIPIF1<0,证明SKIPIF1<0SKIPIF1<0SKIPIF1<0,在SKIPIF1<0上做点SKIPIF1<0,使SKIPIF1<0,连接SKIPIF1<0,证明SKIPIF1<0SKIPIF1<0SKIPIF1<0,接着推导出SKIPIF1<0,最后证明SKIPIF1<0SKIPIF1<0SKIPIF1<0,即可求解.【详解】解法1如图:以SKIPIF1<0为斜边构造等腰直角三角形SKIPIF1<0,连接SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四边形SKIPIF1<0正方形SKIPIF1<0SKIPIF1<0,SKIPIF1<0又SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0与SKIPIF1<0中SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故答案为:2.解法2如图:连接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0根据题意正方形SKIPIF1<0的边长为4,SKIPIF1<0的半径为2SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0上做点SKIPIF1<0,使SKIPIF1<0,则SKIPIF1<0,连接SKIPIF1<0在SKIPIF1<0与SKIPIF1<0中SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,则SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0上做点SKIPIF1<0,使SKIPIF1<0,则SKIPIF1<0,连接SKIPIF1<0在SKIPIF1<0与SKIPIF1<0中SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,则SKIPIF1<0SKIPIF1<0如图所示连接SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0与SKIPIF1<0中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故答案为:2.【点睛】本题考查正方形的性质,相似三角形,勾股定理等知识,难度较大,熟悉以上知识点运用是解题关键.2.如图所示的平面直角坐标系中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是第一象限内一动点,SKIPIF1<0,连接SKIPIF1<0、SKIPIF1<0,则SKIPIF1<0的最小值是.【答案】SKIPIF1<0【分析】取点SKIPIF1<0,连接SKIPIF1<0,SKIPIF1<0.根据SKIPIF1<0,有SKIPIF1<0,即可证明SKIPIF1<0,即有SKIPIF1<0,进而可得SKIPIF1<0,则有SKIPIF1<0,利用勾股定理可得SKIPIF1<0,则有SKIPIF1<0,问题得解.【详解】解:如图,取点SKIPIF1<0,连接SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,(当B、P、T三点共线时取等号)SKIPIF1<0的最小值为SKIPIF1<0.故答案为:SKIPIF1<0.【点睛】本题考查阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.3.如图所示,SKIPIF1<0,半径为2的圆SKIPIF1<0内切于SKIPIF1<0.SKIPIF1<0为圆SKIPIF1<0上一动点,过点SKIPIF1<0作SKIPIF1<0、SKIPIF1<0分别垂直于SKIPIF1<0的两边,垂足为SKIPIF1<0、SKIPIF1<0,则SKIPIF1<0的取值范围为.【答案】SKIPIF1<0【分析】根据题意,本题属于动点最值问题-“阿氏圆”模型,首先作SKIPIF1<0于SKIPIF1<0,作SKIPIF1<0于SKIPIF1<0,如图所示,通过代换,将SKIPIF1<0转化为SKIPIF1<0,得到当SKIPIF1<0与SKIPIF1<0相切时,SKIPIF1<0取得最大值和最小值,分两种情况,作出图形,数形结合解直角三角形即可得到相应最值,进而得到取值范围.【详解】解:作SKIPIF1<0于SKIPIF1<0,作SKIPIF1<0于SKIPIF1<0,如图所示:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0当SKIPIF1<0与SKIPIF1<0相切时,SKIPIF1<0取得最大和最小,①连接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,如图1所示:可得:四边形SKIPIF1<0是正方形,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;②连接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,如图2所示:可得:四边形SKIPIF1<0是正方形,SKIPIF1<0,由上同理可知:在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.故答案为:SKIPIF1<0.【点睛】本题考查动点最值模型-“阿氏圆”,难度较大,掌握解决动点最值问题的方法,熟记相关几何知识,尤其是圆的相关知识是解决问题的关键.4.如图,在SKIPIF1<0中,点A、点SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,点SKIPIF1<0是SKIPIF1<0的中点,点SKIPIF1<0是劣弧SKIPIF1<0上的动点,则SKIPIF1<0的最小值为.【答案】SKIPIF1<0【分析】延长SKIPIF1<0到SKIPIF1<0,使得SKIPIF1<0,连接SKIPIF1<0,SKIPIF1<0,利用相似三角形的性质证明SKIPIF1<0,求SKIPIF1<0的最小值问题转化为求SKIPIF1<0的最小值.求出SKIPIF1<0即可判断.【详解】解:延长SKIPIF1<0到SKIPIF1<0,使得SKIPIF1<0,连接SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最小值为SKIPIF1<0,故答案为:SKIPIF1<0.【点睛】本题考查了相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.5.如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则SKIPIF1<0PA+PB的最小值为.【答案】SKIPIF1<0【分析】SKIPIF1<0PA+PB=SKIPIF1<0(PA+SKIPIF1<0PB),利用相似三角形构造SKIPIF1<0PB即可解答.【详解】解:设⊙O半径为r,OP=r=SKIPIF1<0BC=2,OB=SKIPIF1<0r=2SKIPIF1<0,取OB的中点I,连接PI,∴OI=IB=SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∠O是公共角,∴△BOP∽△POI,∴SKIPIF1<0,∴PI=SKIPIF1<0PB,∴AP+SKIPIF1<0PB=AP+PI,∴当A、P、I在一条直线上时,AP+SKIPIF1<0PB最小,作IE⊥AB于E,∵∠ABO=45°,∴IE=BE=SKIPIF1<0BI=1,∴AE=AB−BE=3,∴AI=SKIPIF1<0,∴AP+SKIPIF1<0PB最小值=AI=SKIPIF1<0,∵SKIPIF1<0PA+PB=SKIPIF1<0(PA+SKIPIF1<0PB),∴SKIPIF1<0PA+PB的最小值是SKIPIF1<0AI=SKIPIF1<0.故答案是SKIPIF1<0.【点睛】本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.6.如图,已知正方ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则SKIPIF1<0的最大值为.【答案】SKIPIF1<0【分析】如图,连接SKIPIF1<0,在SKIPIF1<0上取一点SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0SKIPIF1<0,进而证明SKIPIF1<0,则在点P运动的任意时刻,均有PM=SKIPIF1<0,从而将问题转化为求PD-PM的最大值.连接PD,在△PDM中,PD-PM<DM,故当D、M、P共线时,PD-PM=DM为最大值,勾股定理即可求得SKIPIF1<0.【详解】如图,连接SKIPIF1<0,在SKIPIF1<0上取一点SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0在△PDM中,PD-PM<DM,当D、M、P共线时,PD-PM=DM为最大值,SKIPIF1<0四边形SKIPIF1<0是正方形SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0故答案为:SKIPIF1<0.【点睛】本题考查了圆的性质,相似三角形的性质与判定,勾股定理,构造SKIPIF1<0是解题的关键.7.如图,在边长为4的正方形ABCD内有一动点P,且BP=SKIPIF1<0.连接CP,将线段PC绕点P逆时针旋转90°得到线段PQ.连接CQ、DQ,则SKIPIF1<0DQ+CQ的最小值为.【答案】5【分析】连接AC、AQ,先证明△BCP∽△ACQ得SKIPIF1<0即AQ=2,在AD上取AE=1,证明△QAE∽△DAQ得EQ=SKIPIF1<0QD,故SKIPIF1<0DQ+CQ=EQ+CQ≥CE,求出CE即可.【详解】解:如图,连接AC、AQ,∵四边形ABCD是正方形,PC绕点P逆时针旋转90°得到线段PQ,∴∠ACB=∠PCQ=45°,∴∠BCP=∠ACQ,cos∠ACB=SKIPIF1<0,cos∠PCQ=SKIPIF1<0,∴∠ACB=∠PCO,∴△BCP∽△ACQ,∴SKIPIF1<0∵BP=SKIPIF1<0,∴AQ=2,∴Q在以A为圆心,AQ为半径的圆上,在AD上取AE=1,∵SKIPIF1<0,SKIPIF1<0,∠QAE=∠DAQ,∴△QAE∽△DAQ,∴SKIPIF1<0即EQ=SKIPIF1<0QD,∴SKIPIF1<0DQ+CQ=EQ+CQ≥CE,连接CE,∴SKIPIF1<0,∴SKIPIF1<0DQ+CQ的最小值为5.故答案为:5.【点睛】本题主要考查了正方形的性质,旋转的性质,相似三角形的性质与判定,三角函数,解题的关键在于能够连接AC、AQ,证明两对相似三角形求解.8.如图,在SKIPIF1<0中,SKIPIF1<0,以点B为圆心作圆B与SKIPIF1<0相切,点P为圆B上任一动点,则SKIPIF1<0的最小值是.【答案】SKIPIF1<0【分析】作BH⊥AC于H,取BC的中点D,连接PD,如图,根据切线的性质得BH为⊙B的半径,再根据等腰直角三角形的性质得到BHSKIPIF1<0ACSKIPIF1<0,接着证明△BPD∽△BCP得到PDSKIPIF1<0PC,所以PASKIPIF1<0PC=PA+PD,而PA+PD≥AD(当且仅当A、P、D共线时取等号),从而计算出AD得到PASKIPIF1<0的最小值.【详解】解:作BH⊥AC于H,取BC的中点D,连接PD,如图,∵AC为切线,∴BH为⊙B的半径,∵∠ABC=90°,AB=CB=2,∴ACSKIPIF1<0BA=2SKIPIF1<0,∴BHSKIPIF1<0ACSKIPIF1<0,∴BPSKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,而∠PBD=∠CBP,∴△BPD∽△BCP,∴SKIPIF1<0,∴PDSKIPIF1<0PC,∴PASKIPIF1<0PC=PA+PD,而PA+PD≥AD(当且仅当A、P、D共线时取等号),而ADSKIPIF1<0,∴PA+PD的最小值为SKIPIF1<0,即PASKIPIF1<0的最小值为SKIPIF1<0.故答案为:SKIPIF1<0.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.解决问题的关键是利用相似比确定线段PDSKIPIF1<0PC.也考查了等腰直角三角形的性质.9.如图,在RtSKIPIF1<0中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的SKIPIF1<0上任意一点,连接BP,CP,则SKIPIF1<0BP+CP的最小值是.【答案】SKIPIF1<0.【分析】在AB上取一点T,使得AT=1,连接PT,PA,CT.证明SKIPIF1<0,推出SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,推出PT=SKIPIF1<0PB,推出SKIPIF1<0PB+CP=CP+PT,根据PC+PT≥TC,求出CT即可解决问题.【详解】解:在AB上取一点T,使得AT=1,连接PT,PA,CT.∵PA=2.AT=1,AB=4,∴PA2=SKIPIF1<0AT•AB,∴SKIPIF1<0=SKIPIF1<0,∵∠PAT=∠PAB,∴SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴PT=SKIPIF1<0PB,∴SKIPIF1<0PB+CP=CP+PT,∵PC+PT≥TC,在RtSKIPIF1<0中,∵∠CAT=90°,AT=1,AC=4,∴CT=SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0PB+PC≥SKIPIF1<0,∴SKIPIF1<0PB+PC的最小值为SKIPIF1<0.故答案为SKIPIF1<0.【点睛】本题考查等腰直角三角形的性质,三角形相似的判定与性质,勾股定理的应用,三角形的三边关系,圆的基本性质,掌握以上知识是解题的关键.10.如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是.
【答案】SKIPIF1<0【分析】如下图,在CA上取一点E,使得CE=4,先证△DCE∽△ACD,将SKIPIF1<0转化为DE,从而求得SKIPIF1<0的最小距离,进而得出2AD+3BD的最小值.【详解】如下图,在CA上取一点E,使得CE=4
∵AC=9,CD=6,CE=4∴SKIPIF1<0∵∠ECD=∠ACD∴△DCE∽△ACD∴SKIPIF1<0∴ED=SKIPIF1<0在△EDB中,ED+DB≥EB∴ED+DB最小为EB,即ED+DB=EB∴SKIPIF1<0在Rt△ECB中,EB=SKIPIF1<0∴SKIPIF1<0∴2AD+3DB=SKIPIF1<0故答案为:SKIPIF1<0.【点睛】本题考查求最值问题,解题关键是构造出△DCE∽△ACD.11.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣SKIPIF1<0PC的最大值为.【答案】5【详解】分析:由PD−SKIPIF1<0PC=PD−PG≤DG,当点P在DG的延长线上时,PD−SKIPIF1<0PC的值最大,最大值为DG=5.详解:在BC上取一点G,使得BG=1,如图,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴SKIPIF1<0,∴PG=SKIPIF1<0PC,当点P在DG的延长线上时,PD−SKIPIF1<0PC的值最大,最大值为DG=SKIPIF1<0=5.故答案为5点睛:本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.二、解答题12.已知SKIPIF1<0与SKIPIF1<0有公共顶点C,SKIPIF1<0为等边三角形,在SKIPIF1<0中,SKIPIF1<0.(1)如图1,当点E与点B重合时,连接AD,已知四边形ABDC的面积为SKIPIF1<0,求SKIPIF1<0的值;(2)如图2,SKIPIF1<0,A、E、D三点共线,连接SKIPIF1<0、SKIPIF1<0,取SKIPIF1<0中点M,连接SKIPIF1<0,求证:SKIPIF1<0;(3)如图3,SKIPIF1<0,SKIPIF1<0,将SKIPIF1<0以C为旋转中心旋转,取SKIPIF1<0中点F,当SKIPIF1<0的值最小时,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)见解析(3)SKIPIF1<0【分析】(1)延长SKIPIF1<0到T,使得SKIPIF1<0连接SKIPIF1<0,过点D做SKIPIF1<0于N,证明SKIPIF1<0,得出SKIPIF1<0,SKIPIF1<0,证明SKIPIF1<0为等边三角形,设SKIPIF1<0,得出SKIPIF1<0,求出x的值即可得出答案;(2)延长SKIPIF1<0到SKIPIF1<0使得SKIPIF1<0,连接SKIPIF1<0、SKIPIF1<0,证明SKIPIF1<0,得出SKIPIF1<0,证明SKIPIF1<0为SKIPIF1<0的中位线,得出SKIPIF1<0,即可证明结论;(3)连接SKIPIF1<0,过点A作SKIPIF1<0于点G,以点C为圆心,SKIPIF1<0为半径作圆,在SKIPIF1<0上截取SKIPIF1<0,连接SKIPIF1<0,证明SKIPIF1<0,得出SKIPIF1<0,即SKIPIF1<0,得出SKIPIF1<0,连接SKIPIF1<0与SKIPIF1<0交于一点,当点F在此点时,SKIPIF1<0最小,即SKIPIF1<0最小,过点M作SKIPIF1<0于点N,过点A作SKIPIF1<0于点Q,求出SKIPIF1<0,SKIPIF1<0即可得出答案.【详解】(1)解:延长SKIPIF1<0到T,使得SKIPIF1<0连接SKIPIF1<0,过点D做SKIPIF1<0于N,如图所示:∵SKIPIF1<0为等边三角形,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,四边形SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0为等边三角形,∵四边形ABDC的面积为SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,设SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,(2)证明:延长SKIPIF1<0到SKIPIF1<0使得SKIPIF1<0,连接SKIPIF1<0、SKIPIF1<0,如图所示:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0为等边三角形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0为等边三角形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵A为SKIPIF1<0中点,M为SKIPIF1<0中点,∴SKIPIF1<0为SKIPIF1<0的中位线,∴SKIPIF1<0,∴SKIPIF1<0;(3)解:如图,连接SKIPIF1<0,过点A作SKIPIF1<0于点G,以点C为圆心,SKIPIF1<0为半径作圆,在SKIPIF1<0上截取SKIPIF1<0,连接SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵点F为等边三角形SKIPIF1<0的边SKIPIF1<0中点,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0的长度为定值,∴在SKIPIF1<0旋转时,点F在以C为圆心,SKIPIF1<0为半径的圆上运动,∴如图,连接SKIPIF1<0与SKIPIF1<0交于一点,当点F在此点时,SKIPIF1<0最小,即SKIPIF1<0最小,过点M作SKIPIF1<0于点N,过点A作SKIPIF1<0于点Q,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【点睛】本题主要考查了等边三角形的判定和性质,三角形全等的判定和性质,三角形相似的判定和性质,特殊角的三角函数,求正切值,勾股定理,直角三角形的性质,解题的关键是作出辅助线,找出SKIPIF1<0取最小值时,点F的位置.13.如图1,抛物线SKIPIF1<0与SKIPIF1<0轴交于SKIPIF1<0两点,与SKIPIF1<0轴交于点SKIPIF1<0,其中点SKIPIF1<0的坐标为SKIPIF1<0,抛物线的对称轴是直线SKIPIF1<0.(1)求抛物线的解析式;(2)若点SKIPIF1<0是直线SKIPIF1<0下方的抛物线上一个动点,是否存在点SKIPIF1<0使四边形SKIPIF1<0的面积为16,若存在,求出点SKIPIF1<0的坐标若不存在,请说明理由;(3)如图2,过点SKIPIF1<0作SKIPIF1<0交抛物线的对称轴于点SKIPIF1<0,以点SKIPIF1<0为圆心,2为半径作SKIPIF1<0,点SKIPIF1<0为SKIPIF1<0上的一个动点,求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0(3)SKIPIF1<0【分析】(1)根据点SKIPIF1<0的坐标为SKIPIF1<0,抛物线的对称轴是直线SKIPIF1<0.待定系数法求二次函数解析式即可,(2)先求得直线SKIPIF1<0解析式,设SKIPIF1<0,则SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0轴交直线SKIPIF1<0于点SKIPIF1<0,根据SKIPIF1<0等于16建立方程,解一元二次方程即可求得SKIPIF1<0的值,然后求得SKIPIF1<0的坐标,(3)在SKIPIF1<0上取SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0,构造SKIPIF1<0,则当SKIPIF1<0三点共线时,取得最小值,最小值为SKIPIF1<0,勾股定理解直角三形即可.【详解】(1)解:∵抛物线SKIPIF1<0与SKIPIF1<0轴交于SKIPIF1<0两点,与SKIPIF1<0轴交于点SKIPIF1<0,点SKIPIF1<0的坐标为SKIPIF1<0,抛物线的对称轴是直线SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0抛物线解析式为:SKIPIF1<0,(2)当SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,设直线SKIPIF1<0解析式为SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0直线SKIPIF1<0解析式为SKIPIF1<0,设SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0轴交直线SKIPIF1<0于点SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0四边形SKIPIF1<0的面积为16,SKIPIF1<0SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,(3)如图,过点SKIPIF1<0作SKIPIF1<0交抛物线的对称轴于点SKIPIF1<0,以点SKIPIF1<0为圆心,2为半径作SKIPIF1<0,SKIPIF1<0是抛物线的对称轴,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0上取SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0轴于点SKIPIF1<0,交抛物线对称轴于点SKIPIF1<0,则SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,当SKIPIF1<0三点共线时,取得最小值,最小值为SKIPIF1<0,SKIPIF1<0SKIPIF1<0.则SKIPIF1<0的最小值为SKIPIF1<0.【点睛】本题考查了二次函数综合,相似三角形的性质与判定,掌握二次函数的性质与相似三角形的性质与判定是解题的关键.14.如图1,抛物线SKIPIF1<0与x轴交于点SKIPIF1<0,与y轴交于点B,在x轴上有一动点SKIPIF1<0(SKIPIF1<0),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式:(2)设△PMN的周长为SKIPIF1<0,△AEN的周长为SKIPIF1<0,若SKIPIF1<0求m的值.(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转得到SKIPIF1<0,旋转角为SKIPIF1<0(SKIPIF1<0),连接SKIPIF1<0、SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(1)a=-SKIPIF1<0.直线AB解析式为y=-SKIPIF1<0x+3;(2)2(3)SKIPIF1<0【分析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式;(2)由△PNM∽△ANE,推出SKIPIF1<0,列出方程即可解决问题;(3)在y轴上取一点M使得OM′=SKIPIF1<0,构造相似三角形,可以证明AM′就是E′A+SKIPIF1<0E′B的最小值.【详解】(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=-1或-SKIPIF1<0,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴-SKIPIF1<0=4,∴a=-SKIPIF1<0.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则SKIPIF1<0,解得SKIPIF1<0,∴直线AB解析式为y=-SKIPIF1<0x+3;(2)如图1,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∵SKIPIF1<0∴SKIPIF1<0,∵NE∥OB,∴SKIPIF1<0,∴SKIPIF1<0,∵抛物线解析式为SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,解得m=2或4,经检验x=4是分式方程的增根,∴m=2;(3)如图2,在y轴上取一点M′使得OM′=SKIPIF1<0,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=SKIPIF1<0,∴OE′2=OM′•OB,∴SKIPIF1<0,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,此时SKIPIF1<0最小(两点间线段最短,A、M′、E′共线时),最小值SKIPIF1<0.【点睛】本题为二次函数综合题,主要考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是SKIPIF1<0的最小值.15.如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=SKIPIF1<0,连接AF,BD(1)求证:△BDC≌△AFC(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+SKIPIF1<0AD的值;(3)直接写出正方形CDEF旋转过程中,BD+SKIPIF1<0AD的最小值.【答案】(1)见解析;(2)SKIPIF1<0或SKIPIF1<0;(3)SKIPIF1<0【分析】(1)利用SAS,即可证明△FCA≌△DCB;(2)分两种情况当点D,E在AB边上时和当点E,F在边AB上时,讨论即可求解;(3)取AC的中点M.连接DM,BM.则CM=1,可证得△DCM∽△ACD,可得DM=SKIPIF1<0AD,从而得到当B,D,M共线时,BD+SKIPIF1<0AD的值最小,即可求解.【详解】(1)证明:∵四边形CDEF是正方形,∴CF=CD,∠DCF=∠ACB=90°,∴∠ACF=∠DCB,∵AC=CB,∴△FCA≌△DCB(SAS);(2)解:①如图2中,当点D,E在AB边上时,∵AC=BC=2,∠ACB=90°,∴SKIPIF1<0,∵CD⊥AB,∴AD=BD=SKIPIF1<0,∴BD+SKIPIF1<0AD=SKIPIF1<0;②如图3中,当点E,F在边AB上时.BD=CF=SKIPIF1<0SKIPIF1<0,AD=SKIPIF1<0=SKIPIF1<0,∴BD+SKIPIF1<0AD=SKIPIF1<0,综上所述,BD+SKIPIF1<0AD的值SKIPIF1<0或SKIPIF1<0;(3)如图4中.取AC的中点M.连接DM,BM.则CM=1,∵CD=SKIPIF1<0,CM=1,CA=2,∴CD2=CM•CA,∴SKIPIF1<0=SKIPIF1<0,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴DM=SKIPIF1<0AD,∴BD+SKIPIF1<0AD=BD+DM,∴当B,D,M共线时,BD+SKIPIF1<0AD的值最小,最小值SKIPIF1<0.【点睛】本题主要考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,锐角三角函数,熟练掌握相关知识点是解题的关键.16.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+SKIPIF1<0PA的值最小,请求出这个最小值,并说明理由.【答案】(1)y=x2﹣6x+5,B(5,0);(2)当M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18;(3)PC+SKIPIF1<0PA的最小值为SKIPIF1<0,理由详见解析.【分析】(1)由直线y=﹣5x+5求点A、C坐标,用待定系数法求抛物线解析式,进而求得点B坐标.(2)从x轴把四边形AMBC分成△ABC与△ABM;由点A、B、C坐标求△ABC面积;设点M横坐标为m,过点M作x轴的垂线段MH,则能用m表示MH的长,进而求△ABM的面积,得到△ABM面积与m的二次函数关系式,且对应的a值小于0,配方即求得m为何值时取得最大值,进而求点M坐标和四边形AMBC的面积最大值.(3)作点D坐标为(4,0),可得BD=1,进而有SKIPIF1<0,再加上公共角∠PBD=∠ABP,根据两边对应成比例且夹角相等可证△PBD∽△ABP,得SKIPIF1<0等于相似比SKIPIF1<0,进而得PD=SKIPIF1<0AP,所以当C、P、D在同一直线上时,PC+SKIPIF1<0PA=PC+PD=CD最小.用两点间距离公式即求得CD的长.【详解】解:(1)直线y=﹣5x+5,x=0时,y=5∴C(0,5)y=﹣5x+5=0时,解得:x=1∴A(1,0)∵抛物线y=x2+bx+c经过A,C两点∴SKIPIF1<0
解得:SKIPIF1<0∴抛物线解析式为y=x2﹣6x+5当y=x2﹣6x+5=0时,解得:x1=1,x2=5∴B(5,0)(2)如图1,过点M作MH⊥x轴于点H∵A(1,0),B(5,0),C(0,5)∴AB=5﹣1=4,OC=5∴S△ABC=SKIPIF1<0AB•OC=SKIPIF1<0×4×5=10∵点M为x轴下方抛物线上的点∴设M(m,m2﹣6m+5)(1<m<5)∴MH=|m2﹣6m+5|=﹣m2+6m﹣5∴S△ABM=SKIPIF1<0AB•MH=SKIPIF1<0×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8∴S四边形AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18∴当m=3,即M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18(3)如图2,在x轴上取点D(4,0),连接PD、CD∴BD=5﹣4=1∵AB=4,BP=2∴SKIPIF1<0∵∠PBD=∠ABP∴△PBD∽△ABP∴SKIPIF1<0∴PD=SKIP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 参数检验培训
- 宿州学院《中国诗歌批评史》2023-2024学年第二学期期末试卷
- 忻州师范学院《外国文学经典作品赏析》2023-2024学年第一学期期末试卷
- 安徽省宣城市宣州区雁翅校2025年5月初三第三次联考物理试题试卷含解析
- 护理自理能力评分
- 教育其实很美学习交流
- 作业基础知识
- 浙江省医疗卫生事业单位招聘-营养学类历年考试真题库(含答案)
- 2024-2025学年下学期高一英语人教版同步经典题精练之语法填空
- 广西壮族自治区北海市七中2024-2025学年第一高三上学期12月考试数学试题(解析版)
- 员工法制教育培训
- 湖北省武汉市外国语学校2024-2025学年九年级下学期3月月考数学试卷 (原卷版+解析版)
- 辽宁省名校联盟2024-2025学年高三下学期3月份联合考试历史试题(含解析)
- 广东省广州市普通高中毕业班2025年综合测试(一)地理试卷 (含答案)
- 工程项目部安全生产治本攻坚三年行动实施方案
- 挡墙施工危险源辨识及风险评价
- 《胃esd》ppt课件
- 公共行政学》课程综述(2)
- 东芝电梯OBM操作说明
- 污水处理厂试运行记录表改
- 复合手术室ppt课件
评论
0/150
提交评论