




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市平度实验2023-2024学年数学九年级第一学期期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A. B. C. D.2.服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200﹣x)件,若想获得最大利润,则x应定为()A.150元 B.160元 C.170元 D.180元3.如图,将一块含30°的直角三角板绕点A按顺时针方向旋转到△A1B1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.30° B.60° C.90° D.120°4.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2 B.4 C.8 D.165.如图,A,B,C是⊙O上的三点,∠BAC=55°,则∠BOC的度数为()A.100° B.110° C.125° D.130°6.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是()A.①②③④ B.④③②① C.④③①② D.②③④①7.如图,是的直径,、是弧(异于、)上两点,是弧上一动点,的角平分线交于点,的平分线交于点.当点从点运动到点时,则、两点的运动路径长的比是()A. B. C. D.8.在△ABC中,若|cosA.45° B.60° C.75° D.105°9.如图,抛物线与轴交于点,与轴的负半轴交于点,点是对称轴上的一个动点.连接,当最大时,点的坐标是()A. B. C. D.10.己知a、b、c均不为0,且,若,则k=()A.-1 B.0 C.2 D.311.下列事件是必然事件的是()A.打开电视播放建国70周年国庆阅兵式B.任意翻开初中数学书一页,内容是实数练习C.去领奖的三位同学中,其中有两位性别相同D.食用保健品后长生不老12.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若AC:AB=2:5,则S△ADC:S△BDC是()A.3:19 B. C.3: D.4:21二、填空题(每题4分,共24分)13.四边形ABCD与四边形位似,点O为位似中心.若,则________.14.图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,操作平台C离地面的高度为_______米.(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)15.将一块弧长为2π的半圆形铁皮围成一个圆锥的侧面(接头处忽略不计),则围成的圆锥的高为____.16.如图,在菱形中,与交于点,若,则菱形的面积为_____.17.在一个不透明的盒子里装有5个黑色棋子和若干白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到白色棋子的概率是,则白色棋子的个数为_____.18.如图,点在函数的图象上,直线分别与轴、轴交于点,且点的横坐标为4,点的纵坐标为,则的面积是________.三、解答题(共78分)19.(8分)如图,已知抛物线(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.20.(8分)目前“微信”、“支付宝”、“共享单车“和“网购”给我们的生活带来了很多便利,九年级数学兴趣小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种),并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”,从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.21.(8分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB=2∠EAB.(1)求证:AC是⊙O的切线;(2)若,,求BF的长.22.(10分)已知锐角△ABC内接于⊙O,OD⊥BC于点D.(1)若∠BAC=60°,⊙O的半径为4,求BC的长;(2)请用无刻度直尺画出△ABC的角平分线AM.(不写作法,保留作图痕迹)23.(10分)已知关于的方程的一个实数根是3,求另一根及的值.24.(10分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?25.(12分)江华瑶族自治县香草源景区2016年旅游收入500万元,由于政府的重视和开发,近两年旅游收入逐年递增,到今年2018年收入已达720万元.(1)求这两年香草源旅游收入的年平均增长率.(2)如果香草源旅游景区的收入一直保持这样的平均年增长率,从2018年算起,请直接写出n年后的收入表达式.26.如图,在△ABC中,点O为BC边上一点,⊙O经过A、B两点,与BC边交于点E,点F为BE下方半圆弧上一点,FE⊥AC,垂足为D,∠BEF=2∠F.(1)求证:AC为⊙O切线.(2)若AB=5,DF=4,求⊙O半径长.
参考答案一、选择题(每题4分,共48分)1、D【分析】随机事件A的概率事件A可能出现的结果数÷所有可能出现的结果数.【详解】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率,故选D.【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.2、A【分析】设获得的利润为y元,由题意得关于x的二次函数,配方,写成顶点式,利用二次函数的性质可得答案.【详解】解:设获得的利润为y元,由题意得:∵a=﹣1<0∴当x=150时,y取得最大值2500元.故选A.【点睛】本题考查了二次函数在实际问题中的应用,正确地写出函数关系式,并明确二次函数的性质,是解题的关键.3、D【分析】先判断出旋转角最小是∠CAC1,根据直角三角形的性质计算出∠BAC,再由旋转的性质即可得出结论.【详解】∵Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴旋转角最小是∠CAC1,∵∠C=90°,∠B=30°,∴∠BAC=60°,∵△AB1C1由△ABC旋转而成,∴∠B1AC1=∠BAC=60°,∴∠CAC1=180°﹣∠B1AC1=180°﹣60°=120°,故选:D.【点睛】此题考查旋转的性质,熟知图形旋转后所得图形与原图形全等是解题的关键.4、B【解析】⊙O最长的弦就是直径从而不难求得半径的长.【详解】∵⊙O中最长的弦为8cm,即直径为8cm,∴⊙O的半径为4cm.故选B.【点睛】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键.5、B【分析】由点A、B、C是⊙O上的三点,∠BAC=40°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【详解】解:∵∠BAC=55°,∴∠BOC=2∠BAC=110°.(圆周角定理)故选:B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半6、C【分析】太阳光线下的影子是平行投影,就北半球而言,从早到晚物体影子的指向是:西-西北-北-东北-东,于是即可得到答案.【详解】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:④③①②,故选C.【点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西-西北-北-东北-东”,是解题的关键.7、A【解析】连接BE,由题意可得点E是△ABC的内心,由此可得∠AEB=135°,为定值,确定出点E的运动轨迹是是弓形AB上的圆弧,此圆弧所在圆的圆心在AB的中垂线上,根据题意过圆心O作直径CD,则CD⊥AB,在CD的延长线上,作DF=DA,则可判定A、E、B、F四点共圆,继而得出DE=DA=DF,点D为弓形AB所在圆的圆心,设⊙O的半径为R,求出点C的运动路径长为,DA=R,进而求出点E的运动路径为弧AEB,弧长为,即可求得答案.【详解】连结BE,∵点E是∠ACB与∠CAB的交点,∴点E是△ABC的内心,∴BE平分∠ABC,∵AB为直径,∴∠ACB=90°,∴∠AEB=180°-(∠CAB+∠CBA)=135°,为定值,,∴点E的轨迹是弓形AB上的圆弧,∴此圆弧的圆心一定在弦AB的中垂线上,∵,∴AD=BD,如下图,过圆心O作直径CD,则CD⊥AB,∠BDO=∠ADO=45°,在CD的延长线上,作DF=DA,则∠AFB=45°,即∠AFB+∠AEB=180°,∴A、E、B、F四点共圆,∴∠DAE=∠DEA=67.5°,∴DE=DA=DF,∴点D为弓形AB所在圆的圆心,设⊙O的半径为R,则点C的运动路径长为:,DA=R,点E的运动路径为弧AEB,弧长为:,C、E两点的运动路径长比为:,故选A.【点睛】本题考查了点的运动路径,涉及了三角形的内心,圆周角定理,四点共圆,弧长公式等,综合性较强,正确分析出点E运动的路径是解题的关键.8、C【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得
cosA=12,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故选C9、D【分析】先根据题意求出点A、点B的坐标,A(0,-3),B(-1,0),抛物线的对称轴为x=1,根据三角形三边的关系得≤AB,当ABM三点共线时取等号,即M点是x=-1与直线AB的交点时,最大.求出点M的坐标即可.【详解】解:根据三角形三边的关系得:≤AB,当ABM三点共线时取等号,当三点共线时,最大,则直线与对称轴的交点即为点.由可知,,对称轴设直线为.故直线解析式为当时,.故选:.【点睛】本题考查了三角形三边关系的应用,及二次函数的性质应用.找到三点共线时最大是关键,10、D【解析】分别用含有k的代数式表示出2b+c,2c+a,2a+b,再相加即可求解.【详解】∵∴,,三式相加得,∵∴k=3.故选D.【点睛】本题考查了比的性质,解题的关键是求得2b+c=ak,2c+a=bk,2a+b=ck.11、C【分析】根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】A.打开电视播放建国70周年国庆阅兵式是随机事件,故不符合题意;B.任意翻开初中数学书一页,内容是实数练习是随机事件,故不符合题意;C.去领奖的三位同学中,其中有两位性别相同是必然事件,符合题意;D.食用保健品后长生不老是不可能事件,故不符合题意;故选C.【点睛】本题考查的是事件的分类,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.12、D【分析】根据已知条件易证△ADC∽△ABC,再利用相似三角形的性质解答即可.【详解】∵在△ABC中,∠ACB=90°,CD⊥AB于点D,∴∠ADC=∠ACB=90°,∠A=∠A,∴△ADC∽△ABC,∴AC:AB=2:5,是相似比,∴S△ADC:S△ABC=4:25,∴S△ADC:S△BDC=4:(25﹣4)=4:21,故选D.【点睛】本题考查了相似三角形的判定和性质,证明△ADC∽△ABC是解决问题的关键.二、填空题(每题4分,共24分)13、1∶3【解析】根据四边形ABCD与四边形位似,,可知位似比为1:3,即可得相似比为1:3,即可得答案.【详解】∵四边形与四边形位似,点为位似中心.,∴四边形与四边形的位似比是1∶3,∴四边形与四边形的相似比是1∶3,∴AB∶OA∶OA′=1∶3,故答案为1∶3.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.14、7.6【分析】作于,于,如图2,易得四边形为矩形,则,,再计算出,在中利用正弦可计算出,然后计算即可.【详解】解:作于E,于,如图2,∴四边形为矩形,∴,,∴,∴在中,,∴,∴,∴操作平台离地面的高度为.故答案是:.【点睛】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用三角函数的定义进行几何计算.15、【分析】根据侧面展开图,求出圆锥的底面半径和母线长,然后利用勾股定理求得圆锥的高.【详解】如下图,为圆锥的侧面展开图草图:∵侧面展开图是弧长为2π的半圆形∴2π=,其中表示圆锥的母线长解得:圆锥侧面展开图的弧长对应圆锥底面圆的周长∴2π=2πr,其中r表示圆锥底面圆半径解得:r=1∴根据勾股定理,h=故答案为:【点睛】本题考查圆锥侧面展开图,公式比较多,建议通过绘制侧面展开图的草图来分析得出公式.16、.【分析】根据菱形的面积等于对角线乘积的一半求解即可.【详解】四边形是菱形,,,菱形的面积为;故答案为:.【点睛】本题考查了菱形的性质,菱形的性质有:具有平行四边形的性质;菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.17、1.【分析】设白色棋子的个数为x个,根据概率公式列出算式,求出x的值即可得出答案.【详解】解:设白色棋子的个数为x个,根据题意得:=,解得:x=1,答:白色棋子的个数为1个;故答案为:1.【点睛】此题主要考查概率的应用,解题的关键是根据题意列出分式方程进行求解.18、【分析】作EC⊥x轴于C,EP⊥y轴于P,FD⊥x轴于D,FH⊥y轴于H,由题意可得点A,B的坐标分别为(4,0),B(0,),利用待定系数法求出直线AB的解析式,再联立反比例函数解析式求出点,F的坐标.由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.【详解】解:如图,作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,
由题意可得点A,B的坐标分别为(4,0),B(0,),由点B的坐标为(0,),设直线AB的解析式为y=kx+,将点A的坐标代入得,0=4k+,解得k=-.∴直线AB的解析式为y=-x+.联立一次函数与反比例函数解析式得,,解得或,即点E的坐标为(1,2),点F的坐标为(3,).∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,
∴S△OEF=S梯形ECDF=×(AF+CE)×CD=×(+2)×(3-1)=.故答案为:.【点睛】本题为一次函数与反比例函数的综合题,考查了反比例函数k的几何意义、一次函数解析式的求法,两函数交点问题,掌握反比例函数图象上点的坐标特征、反比例函数的比例系数k的几何意义,利用转化法求面积是解决问题的关键.三、解答题(共78分)19、(1);(2)P(1,0);(3)M(1,)(1,)(1,﹣1)(1,0).【分析】(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A.B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.【详解】解:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线中,得:,解得:,故抛物线的解析式:.(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x==1,故P(1,0);(3)如图所示:抛物线的对称轴为:x==1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:=,==,=10;①若MA=MC,则,得:=,解得:m=﹣1;②若MA=AC,则,得:=10,得:m=;③若MC=AC,则,得:=10,得:,;当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为M(1,)(1,)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.20、(1)100、35;(2)见解析;(3)【分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;
(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;
(3)根据题意画出树状图得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,再根据概率公式计算可得.【详解】解:(1)∵被调查的总人数m=10÷10%=100人,
∴支付宝的人数所占百分比n%=×100%=35%,即n=35,故答案为:100,35;(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)根据题意画树状图如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为=.【点睛】本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21、(1)证明见解析;(2).【分析】(1)连接AD,如图,根据圆周角定理,再根据切线的判定定理得到AC是⊙O的切线;(2)作F做FH⊥AB于点H,利用余弦定义,再根据三角函数定义求解即可【详解】(1)证明:如图,连接AD.∵E是中点,∴.∴∠DAE=∠EAB.∵∠C=2∠EAB,∴∠C=∠BAD.∵AB是⊙O的直径.∴∠ADB=∠ADC=90°.∴∠C+∠CAD=90°.∴∠BAD+∠CAD=90°.即BA⊥AC∴AC是⊙O的切线.(2)解:如图②,过点F做FH⊥AB于点H.∵AD⊥BD,∠DAE=∠EAB,∴FH=FD,且FH∥AC.在Rt△ADC中,∵,,∴CD=1.同理,在Rt△BAC中,可求得BC=.∴BD=.设DF=x,则FH=x,BF=-x.∵FH∥AC,∴∠BFH=∠C.∴.即.解得x=2.∴BF=.【点睛】本题考查了解直角三角形的应用和切线的判定,经过半径的外端且垂直于这条半径的直线是圆的切线.连接半径在证明垂直即可22、(1);(2)见解析【分析】(1)连接OB、OC,得到,然后根据垂径定理即可求解BC的长;(2)延长OD交圆于E点,连接AE,根据垂径定理得到,即,AE即为所求.【详解】(1)连接OB、OC,∴∵OD⊥BC∴BD=CD,且∵OB=4∴0D=2,BD=∴BC=故答案为;(2)如图所示,延长OD交⊙O于点E,连接AE交BC于点M,AM即为所求根据垂径定理得到,即,所以AE为的角平分线.【点睛】本题考查了垂径定理,同弧所对圆周角是圆心角的一半,熟练掌握圆部分的定理和相关性质是解决本题的关键.23、,另一根为4.【分析】把代入方程求出m的值,再把代入原方程即可求解.【详解】解:把代入方程,得,解得,把代入原方程,得,解得,.所以另一根为4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知方程的解的定义及方程的解法.24、(4)60;(4)作图见试题解析;(4)4.【解析】试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.试题解析:(4)被调查的学生人数为:44÷
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开学第一天记事话题作文(8篇)
- 个人委托服务协议
- ××中学项目评估规定
- 第一次登台表演:记事作文10篇
- 证券投资分析实战模拟题及答案
- 读鲁滨逊漂流记心得体会读后感类型(8篇)
- 2025年安徽省公务员录用考试公安专业科目考点精讲试卷
- 2025年报检员资格考试试卷:进出口商品检验检疫流程
- 2025年会计职称考试《初级会计实务》章节重难点突破高分突破试题
- 2025年大学英语四级考试模拟试卷及翻译解析
- 康复医学科治疗技术操作规范2023版
- 初三体育中考课外训练计划
- 磷酸铁及磷酸铁锂异物防控管理
- 《乘梯安全常识普及课件》
- 小儿扁桃体腺样体摘除术后的饮食护理干预
- 质量保证金退还申请书
- OptiStruct结构分析与工程应用
- 《我国税收制度》课件
- 温室效应的产生与影响研究性学习报告
- 2025年贵安发展集团有限公司招聘笔试参考题库含答案解析
- 行政副总岗位职责
评论
0/150
提交评论