边角边 省赛一等奖_第1页
边角边 省赛一等奖_第2页
边角边 省赛一等奖_第3页
边角边 省赛一等奖_第4页
边角边 省赛一等奖_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ABCDEF1.

什么叫全等三角形?能够重合的两个三角形叫全等三角形.3.已知△ABC

≌△DEF,找出其中相等的边与角.①AB=DE③CA=FD②BC=EF④∠A=∠D⑤

∠B=∠E⑥∠C=∠F2.

全等三角形有什么性质?全等三角形的对应边相等,对应角相等.知识回顾如果只满足这些条件中的一部分,那么能保证△ABC≌△DEF吗?想一想:即:三条边分别相等,三个角分别相等的两个三角形全等.探究活动1:一个条件可以吗?(1)有一条边相等的两个三角形不一定全等(2)有一个角相等的两个三角形不一定全等结论:有一个条件相等不能保证两个三角形全等.利用“SAS”判定三角形全等一讲授新课6cm300有两个条件对应相等不能保证三角形全等.60o300不一定全等探究活动2:两个条件可以吗?3cm4cm不一定全等30060o3cm4cm不一定全等30o

6cm结论:(1)有两个角对应相等的两个三角形(2)有两条边对应相等的两个三角形(3)有一个角和一条边对应相等的两个三角形

每位同学在纸上的两个不同位置分别画一个三角形,它的一个角为50°,夹这个角的两边分别为2cm,2.5cm.

将这两个三角形叠在一起,它们完全重合吗?由此你能得到什么结论?50°2cm2.5cm50°2cm2.5cm探究活动3:已知两边及其夹角可以吗?

下面,我们从以下这几种情形来探讨这个猜测是否为真.

设在△ABC和△A′B′C′中,∠ABC=∠A′B′C′,

我发现它们完全重合,我猜测:有两边和它们的夹角分别相等的两个三角形全等.ABC在△ABC

和△DEF中,∴

△ABC

≌△DEF(SAS).

文字语言:两边和它们的夹角分别相等的两个三角形全等

(简写成“边角边”或“SAS”).知识要点

“边角边”判定方法几何语言:AB=DE,∠A=∠D,AC=AF

,ABCDEF必须是两边“夹角”BC=ADC例2

已知:如图2-42,AB和CD相交于点O,且AO=BO,

CO=DO.求证:△ACO≌△BDO.“边角边”图2-42举例证明:在△ACO和△BDO中,AO=BO,∠AOC=∠BOD(对顶角相等),CO=DO,∴△ACO≌△BDO(SAS).例2:如果AB=CB

,∠ABD=∠CBD,那么

△ABD

和△CBD

全等吗?分析:△ABD

≌△CBD.边:角:边:AB=CB(已知),∠ABD=∠CBD(已知),?ABCD(SAS)BD=BD(公共边).证明:在△ABD

和△CBD中,AB=CB(已知),∠ABD=∠CBD(已知),∴△ABD≌△CBD(SAS).BD=BD(公共边),变式1:已知:如图,AB=CB,∠1=∠2.求证:(1)AD=CD;

(2)DB平分∠ADC.ADBC1243在△ABD与△CBD中证明:∴△ABD≌△CBD(S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论