山东省兖州市第一中学2023年数学高一上期末联考试题含解析_第1页
山东省兖州市第一中学2023年数学高一上期末联考试题含解析_第2页
山东省兖州市第一中学2023年数学高一上期末联考试题含解析_第3页
山东省兖州市第一中学2023年数学高一上期末联考试题含解析_第4页
山东省兖州市第一中学2023年数学高一上期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省兖州市第一中学2023年数学高一上期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x2.已知,,,则下列关系中正确的是A. B.C. D.3.将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到的图象,若,且,则的最大值为A. B.C. D.4.将函数图象向左平移个单位后与的图象重合,则()A. B.C D.5.已知命题,,则命题否定为()A., B.,C., D.,6.在中,是的().A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.设,则()A. B.C. D.8.若点在角的终边上,则的值为A. B.C. D.9.已知角的顶点为坐标原点,始边为轴正半轴,终边经过点,则()A. B.C. D.10.圆与圆的位置关系是A.相离 B.外切C.相交 D.内切11.已知集合和关系的韦恩图如下,则阴影部分所表示的集合为()A. B.C. D.12.已知函数的图象如图所示,则函数与在同一直角坐标系中的图象是A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知函数,则函数的所有零点之和为________14.已知函数,,则它的单调递增区间为______15.如图,扇环ABCD中,弧,弧,,则扇环ABCD的面积__________16.已知,则__________.三、解答题(本大题共6小题,共70分)17.已知向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π](1)若与共线,求x的值;(2)若⊥,求x的值;(3)记f(x)=•,当f(x)取得最小值时,求x的值18.化简与计算(1);(2).19.已知角的终边经过点,,,求的值.20.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面由扇形挖去扇形后构成的已知米,米,线段、线段与弧、弧的长度之和为米,圆心角为弧度(1)求关于的函数解析式;(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值21.已知函数是偶函数(1)求实数的值;(2)若函数的最小值为,求实数的值;(3)当为何值时,讨论关于的方程的根的个数22.已知cos(α-β)cosβ-sin(α-β)sinβ=,<α<2π(1)求sin(2α+)的值;(2)求tan(α-)的值

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】A中,周期为,不是偶函数;B中,周期为,函数为奇函数;C中,周期为,函数为奇函数;D中,周期为,函数为偶函数2、C【解析】利用函数的单调性、正切函数的值域即可得出【详解】,,∴,又∴,则下列关系中正确的是:故选C【点睛】本题考查了指对函数的单调性、三角函数的单调性的应用,属于基础题3、A【解析】分析:利用三角函数的图象变换,可得,由可得,取,取即可得结果.详解:的图象向左平移个单位长度,再向上平移1个单位长度,得到,,且,,,因为,所以时,取为最小值;时,取为最大值最大值为,故选A.点睛:本题主要考查三角函数图象的变换以及三角函数的性质,属于中档题.能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.4、C【解析】利用三角函数的图象变换可求得函数的解析式.【详解】由已知可得.故选:C.5、D【解析】根据全称命题的否定是特称命题形式,直接选出答案.【详解】命题,,是全称命题,故其否定命题为:,,故选:D.6、B【解析】根据不等式的性质,利用充分条件和必要条件的定义进行判定,即可求解,得到答案.【详解】在中,若,可得,满足,即必要性成立;反之不一定成立,所以在中,是的必要不充分条件.故选B.【点睛】本题主要考查了充分条件和必要条件的判定,其中解答中熟练应用三角函数的性质是解答的关键,属于基础题.7、A【解析】利用中间量隔开三个值即可.【详解】∵,∴,又,∴,故选:A【点睛】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.8、A【解析】根据题意,确定角的终边上点的坐标,再利用三角函数定义,即可求解,得到答案【详解】由题意,点在角的终边上,即,则,由三角函数的定义,可得故选A【点睛】本题主要考查了三角函数的定义的应用,其中解答中确定出角的终边上点的坐标,利用三角函数的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题.9、A【解析】利用任意角的三角函数的定义,即可求得的值【详解】角的顶点为坐标原点,始边为轴正半轴,终边过点.由三角函数的定义有:.故选:A10、D【解析】圆的圆心,半径圆的圆心,半径∴∴∴两圆内切故选D点睛:判断圆与圆的位置关系的常见方法(1)几何法:利用圆心距与两半径和与差的关系(2)切线法:根据公切线条数确定11、B【解析】首先判断出阴影部分表示,然后求得,再求得.【详解】依题意可知,,且阴影部分表示.,所以.故选:B【点睛】本小题主要考查根据韦恩图进行集合的运算,属于基础题.12、C【解析】根据幂函数的图象和性质,可得a∈(0,1),再由指数函数和对数函数的图象和性质,可得答案【详解】由已知中函数y=xa(a∈R)的图象可知:a∈(0,1),故函数y=a﹣x为增函数与y=logax为减函数,故选C【点睛】本题考查知识点是幂函数的图象和性质,指数函数和对数函数的图象和性质,难度不大,属于基础题二、填空题(本大题共4小题,共20分)13、0【解析】令,得到,在同一坐标系中作出函数的图象,利用数形结合法求解.【详解】因为函数,所以的对称中心是,令,得,在同一坐标系中作出函数的图象,如图所示:由图象知:两个函数图象有8个交点,即函数有8个零点由对称性可知:零点之和为0,故答案为:014、(区间写成半开半闭或闭区间都对);【解析】由得因为,所以单调递增区间为15、3【解析】根据弧长公式求出,,再由根据扇形的面积公式求解即可.【详解】设,因为弧,弧,,所以,,所以,,又扇形的面积为,扇形的面积为,所以扇环ABCD的面积故答案为:316、##【解析】首先根据同角三角函数的基本关系求出,再利用二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得;【详解】解:因为,所以,所以故答案为:三、解答题(本大题共6小题,共70分)17、(1);(2);(3).【解析】(1)利用两向量平行有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(2)利用两向量垂直有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(3)根据化出一个关于的方程,再利用恒等变化公式将函数转化成,从而找到最小值所取得的x的值.【详解】解:(1)∵向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π]与共线,∴,∴tanx=-,∵x∈[0,π],∴x=(2)∵⊥,∴cosx-sinx=0,∴tanx=1,∵x∈[0,π],∴x=(3)f(x)=•=cosx-,∵x∈[0,π],∴x-∈[-,],∴x-=时,f(x)取得最小值-2,∴当f(x)取得最小值时,x=【点睛】向量间的位置关系:两向量垂直,则,两向量平行,则.18、(1)(2)5【解析】(1)根据指数的运算性质计算即可;(2)根据对数的运算法则计算即可.【小问1详解】原式=.【小问2详解】原式.19、.【解析】利用三角函数的定义可得,进而可求,利用同角关系式可求,再利用两角和的正切公式即得.【详解】∵角的终边经过点,∴,,∵,,∴,,∴20、(1).(2)当时,取最大值.【解析】(1)根据弧长公式和周长列方程得出关于的函数解析式;(2)根据扇形面积公式求出关于的函数,从而得出的最大值.【小问1详解】解:根据题意,可算得弧,弧,,;【小问2详解】解:依据题意,可知,当时,.答:当米时铭牌的面积最大,且最大面积为平方米21、(1)(2)(3)当时,方程有一个根;当时,方程没有根;当或或时,方程有两个根;当时,方程有三个根;当时,方程有四个根【解析】(1)利用偶函数满足,求出的值;(2)对函数变形后利用二次函数的最值求的值;(3)定义法得到的单调性,方程通过换元后得到的根的情况,通过分类讨论最终求出结果.【小问1详解】由题意得:,即,所以,其中,∴,解得:【小问2详解】,∴,故函数的最小值为,令,故的最小值为,等价于,解得:或,无解综上:【小问3详解】由,令,,有由,有,,可得,可知函数为增函数,故当时,函数单调递增,由函数为偶函数,可知函数的增区间为,减区间为,令,有,方程(记为方程①)可化为,整理为:(记为方程②),,当时,有,此时方程②无解,可得方程①无解;当时,时,方程②的解为,可得方程①仅有一个解为;时,方程②的解为,可得方程①有两个解;当时,可得或,1°当方程②有零根时,,此时方程②还有一根为,可得此时方程①有三个解;2°当方程②有两负根时,可得,不可能;3°当方程②有两正根时,可得:,又由,可得,此时方程①有四个根;4°当方程②有一正根一负根时,,可得:或,又由,可得或,此时方程①有两个根,由上知:当时,方程①有一个根;当时,方程①没有根;当或或时,方程①有两个根;当时,方程①有三个根;当时,方程①有四个根【点睛】对于复合函数根的个数问题,要用换元法来求解,通常方法会用到根的判别式,导函数,基本不等式等.22、(1);(2).【解析】(1)先根据题目中的条件结合同角公式求出,利用二倍角公式求出,利用两角和的正弦公式即可求出的值(2)根据第一问求得的的值直接求出的值,再利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论