2024届江苏省盐城市景山中学八年级数学第二学期期末统考试题含解析_第1页
2024届江苏省盐城市景山中学八年级数学第二学期期末统考试题含解析_第2页
2024届江苏省盐城市景山中学八年级数学第二学期期末统考试题含解析_第3页
2024届江苏省盐城市景山中学八年级数学第二学期期末统考试题含解析_第4页
2024届江苏省盐城市景山中学八年级数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省盐城市景山中学八年级数学第二学期期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列事件中,属于随机事件的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.一组对边平行另一组对边相等的四边形是平行四边形C.矩形的两条对角线相等D.菱形的每一条对角线平分一组对角2.我们把宽与长的比值等于黄金比例的矩形称为黄金矩形.如图,在黄金矩形()的边上取一点,使得,连接,则等于()A. B. C. D.3.直线y=﹣x+1不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列关于一元二次方程x2+bx+c=0的四个命题①当c=0,b≠0时,这个方程一定有两个不相等的实数根;②当c≠0时,若p是方程x2+bx+c=0的一个根,则是方程cx2+bx+1=0的一个根;③若c<0,则一定存在两个实数m<n,使得m2+mb+c<0<n2+nb+c;④若p,q是方程的两个实数根,则p﹣q=,其中是假命题的序号是()A.① B.② C.③ D.④5.已知两条对角线长分别为和的菱形,顺次连接它的四边的中点得到的四边形的面积是()A.100 B.48 C.24 D.126.计算的结果是()A.-2 B.2 C.-4 D.47.已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2 B.﹣4,﹣2 C.4,2 D.﹣4,28.如图,点P是□ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A. B. C. D.9.在同一平面直角坐标系中,函数y=ax2+bx与y=﹣bx+a的图象可能是()A. B. C. D.10.若实数使关于的不等式组有且只有四个整数解,且实数满足关于的方程的解为非负数,则符合条件的所有整数的和为()A.1 B.2 C.-2 D.-3二、填空题(每小题3分,共24分)11.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=_____,对角线AC的长为_____.12.计算:(2019﹣)0+(﹣1)2017+|2﹣π|+=_____.13.如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则EF=____________.14.已知反比例函数的图象与一次函数y=k(x﹣3)+2(k>0)的图象在第一象限交于点P,则点P的横坐标a的取值范围为___.15.约分:=_________.16.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,若∠ADB=36°,则∠E=_____°.17.如图,菱形的边长为1,;作于点,以为一边,作第二个菱形,使;作于点,以为一边,作第三个菱形,使;…依此类推,这样作出第个菱形.则_________._________.18.如图,AD是△ABC的角平分线,若AB=8,AC=6,则=_____.三、解答题(共66分)19.(10分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某单位计划在室内安装空气净化装置,需购进A,B两种设备,每台B种设备价格比每台A种设备价格多700元,花3000元购买A种设备和花7200元购买B种设备的数量相同.(1)求A种、B种设备每台各多少元?(2)根据单位实际情况,需购进A,B两种设备共20台,总费用不高于17000元,求A种设备至少要购买多少台?20.(6分)先化简,再求值:,其中-1.21.(6分)已知:如图,在矩形中,点,分别在,边上,,连接,.求证:.22.(8分)某边防局接到情报,近海处有一可疑船只正向公海方向行驶,边防局迅速派出快艇追赶(如图1).图2中、分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.(1)求、的函数解析式;(2)当逃到离海岸12海里的公海时,将无法对其进行检查.照此速度,能否在逃入公海前将其拦截?若能,请求出此时离海岸的距离;若不能,请说明理由.23.(8分)已知关于的方程(1)若请分别用以下方法解这个方程:①配方法;②公式法;(2)若方程有两个实数根,求的取值范围.24.(8分)如图,在平行四边形中,,于点,试求的度数.25.(10分)如图,▱ABCD在平面直角坐标系中,点A(﹣2,0),点B(2,0),点D(0,3),点C在第一象限.(1)求直线AD的解析式;(2)若E为y轴上的点,求△EBC周长的最小值;(3)若点Q在平面直角坐标系内,点P在直线AD上,是否存在以DP,DB为邻边的菱形DBQP?若存在,求出点P的坐标;若不存在,请说明理由.26.(10分)(1);(2).

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

根据平行四边形的判定、矩形的性质、菱形的性质结合随机事件与必然事件的概念逐一进行分析判断即可.【题目详解】A.一组对边平行且一组对角相等的四边形是平行四边形,正确,是必然事件,故不符合题意;B.一组对边平行另一组对边相等的四边形是平行四边形或等腰梯形,是随机事件,故符合题意;C.矩形的两条对角线相等,正确,是必然事件,故不符合题意;D.菱形的每一条对角线平分一组对角,正确,是必然事件,故不符合题意,故选B.【题目点拨】本题考查了随机事件与必然事件,涉及了平行四边形的判定、矩形的性质、菱形的性质等,熟练掌握相关的知识是解题的关键.2、B【解题分析】

利用黄金矩形的定理求出=,再利用矩形的性质得,代入求值即可解题.【题目详解】解:∵矩形ABCD中,AD=BC,根据黄金矩形的定义可知=,∵,∴故选B【题目点拨】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.3、C【解题分析】

由k=﹣1<0,b=1>0,即可判断出图象经过的象限.【题目详解】解:∵直线y=﹣x+1中,k=﹣1<0,b=1>0,∴直线的图象经过第一,二,四象限.∴不经过第三象限,故选:C.【题目点拨】本题考查了一次函数的图象,掌握一次函数图象与系数的关系是解题的关键.4、D【解题分析】

根据一元二次方程根的判别式、方程的解的定义、二次函数与一元二次方程的关系、根与系数的关系判断即可.【题目详解】当c=0,b≠0时,△=b2>0,∴方程一定有两个不相等的实数根,①是真命题;∵p是方程x2+bx+c=0的一个根,∴p2+bp+c=0,∴1++=0,∴是方程cx2+bx+1=0的一个根,②是真命题;当c<0时,抛物线y=x2+bx+c开口向上,与y轴交于负半轴,则当﹣<m<0<n时,m2+mb+c<0<n2+nb+c,③是真命题;p+q=﹣b,pq=c,(p﹣q)2=(p+q)2﹣4pq=b2﹣4c,则|p﹣q|=,④是假命题,故选:D.【题目点拨】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5、D【解题分析】

顺次连接这个菱形各边中点所得的四边形是矩形,且矩形的边长分别是菱形对角线的一半.【题目详解】解:如图∵E、F、G、H分别为各边中点

∴EF∥GH∥AC,EF=GH=AC,

EH=FG=BD,EH∥FG∥BD

∵DB⊥AC,

∴EF⊥EH,

∴四边形EFGH是矩形,

∵EH=BD=3cm,EF=AC=4cm,

∴矩形EFGH的面积=EH×EF=3×4=12cm2,

故选D.【题目点拨】本题考查了菱形的性质,菱形的四边相等,对角线互相垂直,连接菱形各边的中点得到矩形,且矩形的边长是菱形对角线的一半.6、B【解题分析】

根据(a≥0)可得答案.【题目详解】解:,故选:B.【题目点拨】此题主要二次根式的性质,关键是掌握二次根式的基本性质:①≥0;a≥0(双重非负性).②(a≥0)(任何一个非负数都可以写成一个数的平方的形式).③(算术平方根的意义).7、D【解题分析】试题分析:由根与系数的关系式得:,=﹣2,解得:=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D.考点:根与系数的关系.8、A【解题分析】点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选A.9、B【解题分析】

首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【题目详解】解:A、对于直线y=-bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意;B、对于直线y=-bx+a来说,由图象可以判断,a>0,b<0;而对于抛物线y=ax2+bx来说,图象开口向上,对称轴x=->0,在y轴的右侧,符合题意,图形正确;

C、对于直线y=-bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,对称轴x=-<0,应位于y轴的左侧,故不合题意;

D、对于直线y=-bx+a来说,由图象可以判断,a>0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意.

故选:B.【题目点拨】此题主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.10、A【解题分析】

先解不等式组,然后根据不等式组解集的情况即可列出关于m的不等式,从而求出不等式组中m的取值范围;然后解分式方程,根据分式方程解的情况列出关于m的不等式,从而求出分式方程中m的取值范围,然后取公共解集,即可求出结论.【题目详解】解:不等式组的解集为∵关于的不等式组有且只有四个整数解∴解得:分式方程的解为:∵关于的方程的解为非负数,∴解得:m≤2且m≠1综上所述:且m≠1∴符合条件的所有整数的和为(-1)+0+2=1故选A.【题目点拨】此题考查的是含参数的不等式组和含参数的分式方程,掌握根据不等式组解集的情况求参数的取值范围和分式方程解的情况求参数的取值范围是解决此题的关键.二、填空题(每小题3分,共24分)11、120°10【解题分析】∵四边形ABCD是菱形,∴AB=BC=CD=DA,AD∥BC,∵E是AB的中点,且DE⊥AB,∴AE=AD,∴sin∠ADE=,∴∠ADE=30°,∴∠DAE=60°,∵AD∥BC,∴∠ABC=180°−60°=120°;连接BD,交AC于点O,在菱形ABCD中,∠DAE=60°,∴∠CAE=30°,AB=10,∴OB=5,根据勾股定理可得:AO==,即AC=.故答案为:120°;.点睛:本题考查了菱形的性质、线段垂直平分线的性质、勾股定理等知识点,熟练掌握菱形的性质是解题的关键.由在菱形ABCD中,E是AB的中点,且DE⊥AB,可证得AE=AD,即可求得∠ADE=30°,继而求得答案;连接BD,交AC于点O,易得AC⊥BD,由勾股定理,即可求得答案.12、π+2【解题分析】

根据零指数幂,负整数指数幂,绝对值的性质计算即可.【题目详解】原式=.故答案为:.【题目点拨】本题主要考查实数的混合运算,掌握实数的混合运算的顺序和法则是解题的关键.13、3;【解题分析】

先利用勾股定理求出BC的长,然后再根据中位线定理求出EF即可.【题目详解】∵直角三角形ABC中,∠C=90°,AB=10,AC=8,∴BC==6,∵点E、F分别为AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=×6=3,故答案为3.【题目点拨】本题考查了勾股定理,三角形中位线定理,熟练掌握这两个定理的内容是解本题的关键.14、2<a<1.【解题分析】

先确定一次函数图象必过点(1,2),根据k>0得出直线必过一、三象限,继而结合图象利用数形结合思想即可得出答案.【题目详解】当x=1时,y=k(1﹣1)+2=2,即一次函数过点(1,2),∵k>0,∴一次函数的图象必过一、三象限,把y=2代入y=,得x=2,观察图象可知一次函数的图象和反比例函数y=图象的交点的横坐标大于2且小于1,∴2<a<1,故答案为:2<a<1.【题目点拨】本题考查了反比例函数与一次函数的交点问题,熟练掌握相关知识并正确运用数形结合思想是解题的关键.15、.【解题分析】

由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.【题目详解】解:原式=,

故答案为:.【题目点拨】本题考查约分,正确找出公因式是解题的关键.16、18【解题分析】

连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=36°,可得∠E度数.【题目详解】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=36°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=36°,∴∠E=18°.故答案为:18【题目点拨】考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.17、【解题分析】

在△AB1D2中利用30°角的性质和勾股定理计算出AD2=,再根据菱形的性质得AB2=AD2=,同理可求AD3和AD4的值.【题目详解】解:在△AB1D2中,∵,∴∠B1AD2=30°,∴B1D2=,∴AD2==,∵四边形AB2C2D2为菱形,∴AB2=AD2=,在△AB2D3中,∵,∴∠B2AD3=30°,∴B2D3=,∴AD3==,∵四边形AB3C3D3为菱形,∴AB3=AD3=,在△AB3D4中,∵,∴∠B3AD4=30°,∴B3D4=,∴AD4==,故答案为,.【题目点拨】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.菱形的面积等于对角线乘积的一半.也考查了锐角三角函数的知识.18、4:3【解题分析】作DE⊥AB于点E,DF⊥AC于点F,∵AD平分∠BAC,∴DE=DF,===.故答案为4∶3.点睛:本题关键在于利用角平分线的性质得出两个三角形的高相等,将两个三角形面积之比转化为对应的底之比.三、解答题(共66分)19、(1)每台A种设备500元,每台B种设备1元;(2)A种设备至少要购买2台.【解题分析】

(1)设每台A种设备x元,则每台B种设备(x+700)元,根据数量=总价÷单价结合花3000元购买A种设备和花7200元购买B种设备的数量相同,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设购买A种设备m台,则购买B种设备(20−m)台,根据总价=单价×数量结合总费用不高于17000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最小正整数即可.【题目详解】(1)设每台A种设备x元,则每台B种设备(x+700)元,根据题意得:,解得:x=500,经检验,x=500是原方程的解,∴x+700=1.答:每台A种设备500元,每台B种设备1元;(2)设购买A种设备m台,则购买B种设备(20﹣m)台,根据题意得:500m+1(20﹣m)≤17000,解得:m≥2.答:A种设备至少要购买2台.【题目点拨】本题考查了分式方程的应用以及一元一次不等式的应用,正确的理解题意是解题的关键.20、【解题分析】试题分析:先根据分式混合运算的法则把原式进行化简,然后代入计算即可.试题解析:解:原式==当x=时,原式==.21、见解析【解题分析】

根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.【题目详解】证明:∵四边形ABCD是矩形,

∴DC∥AB,DC=AB,

∴CF∥AE,

∵DF=BE,

∴CF=AE,

∴四边形AFCE是平行四边形,

∴AF=CE.【题目点拨】本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.22、(1)A船:,B船:;(2)能追上;此时离海岸的距离为海里.【解题分析】

(1)根据函数图象中的数据用待定系数法即可求出,的函数关系式;(2)根据(2)中的函数关系式求其函数图象交点可以解答本题.【题目详解】解:(1)由题意,设.∵在此函数图像上,∴,解得,由题意,设.∵,在此函数图像上,∴.解得,.∴.(2)由题意,得,解得.∵,∴能追上.此时离海岸的距离为海里.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.23、(1)①,见解析;②,见解析;(2)【解题分析】

(1)①利用配方法解方程;

②先计算判别式的值,然后利用求根公式解方程;

(2)利用判别式的意义得到△=(-5)2-4×(3a+3)≥0,然后解关于a的不等式即可.【题目详解】解:当时,原方程为:∴,∴,∴;,∴;方程有两个实数根,;【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解一元二次方程.24、.【解题分析】

由BD=CD可得∠DBC=∠C=70°,由平行四边形的性质可得AD∥BC,从而有∠ADB=∠DBC=70°,继而在直角△AED中,根据直角三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论