2024届辽宁省营口市八年级数学第二学期期末学业水平测试模拟试题含解析_第1页
2024届辽宁省营口市八年级数学第二学期期末学业水平测试模拟试题含解析_第2页
2024届辽宁省营口市八年级数学第二学期期末学业水平测试模拟试题含解析_第3页
2024届辽宁省营口市八年级数学第二学期期末学业水平测试模拟试题含解析_第4页
2024届辽宁省营口市八年级数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省营口市八年级数学第二学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,一次函数的图象与两坐标轴分别交于、两点,点是线段上一动点(不与点A、B重合),过点分别作、垂直于轴、轴于点、,当点从点开始向点运动时,则矩形的周长()A.不变 B.逐渐变大 C.逐渐变小 D.先变小后变大2.点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75° B.60° C.30° D.45°3.如图,在中,,,是边的中点,则的度数为()A.40° B.50° C.60° D.80°4.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、 D.5、12、135.计算:=()A. B.4 C.2 D.36.菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.12 B.14 C.16 D.247.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是(

)A. B. C. D.8.如图,在正方形中,点,分别在,上,,与相交于点.下列结论:①垂直平分;②;③当时,为等边三角形;④当时,.其中正确的结论是()A.①③ B.②④ C.①③④ D.②③④9.将直线y=2x-3向右平移2个单位。再向上平移2个单位后,得到直线y=kx+b.则下列关于直线y=kx+b的说法正确的是()A.与y轴交于(0,-5) B.与x轴交于(2,0)C.y随x的增大而减小 D.经过第一、二、四象限10.方程3+9=0的根为()A.3 B.-3 C.±3 D.无实数根11.下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.1、2、3B.C.D.12.如图,长方形的高为,底面长为,宽为,蚂蚁沿长方体表面,从点到(点见图中黑圆点)的最短距离是()A. B. C. D.二、填空题(每题4分,共24分)13.若点P(3,2)在函数y=3x-b的图像上,则b=_________.14.以下是小明化简分式的过程.解:原式①②③④(1)小明的解答过程在第_______步开始出错;(2)请你帮助小明写出正确的解答过程,并计算当时分式的值.15.某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数如表,则该周PM2.5指数的众数和中位数分别是________PM2.5指数150155160165天数321116.等边三角形的边长为6,则它的高是________17.写一个图象经过点(﹣1,2)且y随x的增大而减小的一次函数解析式_____.18.如果a是一元二次方程的一个根,那么代数式=__________.三、解答题(共78分)19.(8分)按要求解不等式(组)(1)求不等式的非负整数解.(2)解不等式组,并把它的解集在数轴上表示出来.20.(8分)如图,DE是平行四边形ABCD中的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60度,AD=5,求菱形AEFD的面积.21.(8分)某市公交快速通道开通后,为响应市政府“绿色出行”的号召,家住新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?22.(10分)如图,已知函数的图象为直线,函数的图象为直线,直线、分别交轴于点和点,分别交轴于点和,和相交于点(1)填空:;求直线的解析式为;(2)若点是轴上一点,连接,当的面积是面积的2倍时,请求出符合条件的点的坐标;(3)若函数的图象是直线,且、、不能围成三角形,直接写出的值.23.(10分)已知A(0,2),B(4,0),C(6,6)(1)在图中的直角坐标系中画出△ABC;(2)求△ABC的面积.24.(10分)如图,点E是平行四边形ABCD的边BC的中点,连接AE并延长交DC的延长线于点F,连接AC、BF,∠AEC=2∠ABC;(1)求证:四边形ABFC是矩形;(2)在(1)的条件下,若△AFD是等边三角形,且边长为4,求四边形ABFC的面积。25.(12分)如图1,四边形ABCD中,AD//BC,∠ADC=90°,AD=8,BC=CD=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ,设运动时间为t秒.(1)连接AN、CP,当t为何值时,四边形ANCP为平行四边形;(2)求出点B到AC的距离;(3)如图2,将ΔAQM沿AD翻折,得ΔAKM,是否存在某时刻t,使四边形AQMK为菱形,若存在,求t的值;若不存在,请说明理由26.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.

参考答案一、选择题(每题4分,共48分)1、A【解题分析】

根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+1),根据矩形的周长公式即可得出C矩形CDOE=2,此题得解.【题目详解】解:设点的坐标为,,则,,,故选:.【题目点拨】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.2、D【解题分析】

过E作AB的延长线AF的垂线,垂足为F,可得出∠F为直角,又四边形ABCD为正方形,可得出∠A为直角,进而得到一对角相等,由旋转可得∠DPE为直角,根据平角的定义得到一对角互余,在直角三角形ADP中,根据两锐角互余得到一对角互余,根据等角的余角相等可得出一对角相等,再由PD=PE,利用AAS可得出三角形ADP与三角形PEF全等,根据确定三角形的对应边相等可得出AD=PF,AP=EF,再由正方形的边长相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代换可得出EF=BF,即三角形BEF为等腰直角三角形,可得出∠EBF为45°,再由∠CBF为直角,即可求出∠CBE的度数.【题目详解】过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°,∴∠ADP+∠APD=90°,由旋转可得:PD=PE,∠DPE=90°,∴∠APD+∠EPF=90°,∴∠ADP=∠EPF,在△APD和△FEP中,∵,∴△APD≌△FEP(AAS),∴AP=EF,AD=PF,又∵AD=AB,∴PF=AB,即AP+PB=PB+BF,∴AP=BF,∴BF=EF,又∠F=90°,∴△BEF为等腰直角三角形,∴∠EBF=45°,又∠CBF=90°,则∠CBE=45°.故选D.【题目点拨】此题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,以及等腰直角三角形的判定与性质,其中作出相应的辅助线是解本题的关键.3、D【解题分析】

根据直角三角形斜边的中线等于斜边的中线一半,求解即可.【题目详解】解:∵,是边的中点,∴CD=BD,∴∠DCB=∠B=50°,∴∠CDB=180°-∠DCB-∠B=80°,故选D.【题目点拨】本题考查了三角形的内角和定理及直角三角形的性质,解题的关键是掌握直角三角形斜边的中线等于斜边的一半.4、C【解题分析】

解:A.32+42=52,故是直角三角形,故A选项不符合题意;

B.62+82=102,故是直角三角形,故B选项不符合题意;C.,故不是直角三角形,故C选项符合题意;

D.52+122=132,故是直角三角形,故D选项不符合题意.

故选:C.考点:直角三角形的判定5、D【解题分析】

先利用二次根式的性质化简,再合并同类二次根式得出答案.【题目详解】解:=+2=3.故选:D.【题目点拨】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.6、C【解题分析】试题解析:∵解方程x2-7x+12=0

得:x=3或1

∵对角线长为6,3+3=6,不能构成三角形;

∴菱形的边长为1.

∴菱形ABCD的周长为1×1=2.故选C.7、C【解题分析】

数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.【题目详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个数与总数的比值即.故选C.【题目点拨】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.8、A【解题分析】

①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,

②设BC=x,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;

③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,

④当∠EAF=60°时,可证明△AEF是等边三角形,从而可得∠AEF=60°,而△CEF是等腰直角三角形,得∠CEF=45°,从而可求出∠AEB=75°,进而可得结论.【题目详解】解:①四边形ABCD是正方形,

∴AB═AD,∠B=∠D=90°.

在Rt△ABE和Rt△ADF中,,

∴Rt△ABE≌Rt△ADF(HL),

∴BE=DF

∵BC=CD,

∴BC-BE=CD-DF,即CE=CF,

∵AE=AF,

∴AC垂直平分EF.(故①正确).

②设BC=a,CE=y,

∴BE+DF=2(a-y)

EF=y,

∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).

③当∠DAF=15°时,

∵Rt△ABE≌Rt△ADF,

∴∠DAF=∠BAE=15°,

∴∠EAF=90°-2×15°=60°,

又∵AE=AF

∴△AEF为等边三角形.(故③正确).

④当∠EAF=60°时,由①知AE=AF,∴△AEF是等边三角形,∴∠AEF=60°,又△CEF为等腰直角三角形,∴∠CEF=45°∴∠AEB=180°-∠AEF-∠CEF=75°,∴∠AEB≠∠AEF,故④错误.

综上所述,正确的有①③,

故选:A.【题目点拨】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.9、A【解题分析】

利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【题目详解】直线y=2x-3向右平移2个单位得y=2(x-2)-3,即y=2x-7;再向上平移2个单位得y=2x-7+2,即y=2x-5,A.当x=0时,y=-5,与y轴交于(0,-5),本项正确,B.当y=0时,x=,与x轴交于(,0),本项错误;C.2>0y随x的增大而增大,本项错误;D.2>0,直线经过第一、三象限,-5<0直线经过第四象限,本项错误;故选A.【题目点拨】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.10、D【解题分析】原方程可化为:,∵负数没有平方根,∴原方程无实数根.故选D.11、C【解题分析】试题解析:A、∵12+22=5≠32,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;B、∵(32)2+(42)2≠(52)2

,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;C、∵()2+()2=3=()2,∴以这三个数为长度的线段,能构成直角三角形,故选项正确;D、∵()2+()2=7≠()2,∴以这三个数为长度的线段不能构成直角三角形,故选项错误.故选C.【题目点拨】本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.12、D【解题分析】分析:要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.详解:根据题意可能的最短路线有6条,重复的不算,可以通过三条来计算比较.(见图示)根据他们相应的展开图分别计算比较:图①:;图②:;图③:.∵.故应选D.点睛:考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.二、填空题(每题4分,共24分)13、1【解题分析】∵点P(3,2)在函数y=3x-b的图象上,

∴2=3×3-b,

解得:b=1.

故答案是:1.14、(1)②;(2)2【解题分析】

根据分式的混合运算法则进行计算即可.【题目详解】(1)②,应该是.(2)解:原式=.当时,【题目点拨】此题考查分式的混合运算,解题关键在于掌握运算法则.15、150,1【解题分析】

根据众数和中位数的概念求解.【题目详解】这组数据按照从小到大的顺序排列为:150,150,150,1,1,160,165,则众数为:150,中位数为:1.故答案为:150,1【题目点拨】此题考查中位数,众数,解题关键在于掌握其概念16、【解题分析】

根据等边三角形的性质:三线合一,利用勾股定理可求解高.【题目详解】由题意得底边的一半是3,再根据勾股定理,得它的高为=3,故答案为3.【题目点拨】本题考查的是等边三角形的性质,勾股定理,解答本题的关键是掌握好等腰三角形的三线合一:底边上的高、中线,顶角平分线重合.17、y=﹣x+1(答案不唯一).【解题分析】

根据一次函数的性质,y随x的增大而减小时k值小于0,令k=−1,然后求解即可.【题目详解】解:∵y随x的增大而减小,∴k<0,不妨设为y=﹣x+b,把(﹣1,1)代入得,1+b=1,解得b=1,∴函数解析式为y=﹣x+1.故答案为:y=﹣x+1(答案不唯一).【题目点拨】本题考查了一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.18、1【解题分析】

根据一元二次方程的解的定义得到a2-1a=5,再把8-a2+1a变形为8-(a2-1a),然后利用整体代入的方法计算即可.【题目详解】解:把x=a代入x2-1x-5=0得a2-1a-5=0,

所以a2-1a=5,

所以8-a2+1a=8-(a2-1a)=8-5=1.

故答案为:1.【题目点拨】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.三、解答题(共78分)19、(1)非负整数解为1、2、3、4;(2)-3<x≤1,数轴上表示见解析【解题分析】

(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【题目详解】(1)5(2x+1)≤3(3x-2)+15,10x+5≤9x-6+15,10x-9x≤-6+15-5,x≤4,则不等式的非负整数解为1、2、3、4;(2)解不等式2(x-3)<4x,得:x>-3,解不等式,得:x≤1,则不等式组的解集为-3<x≤1,将不等式组的解集表示在数轴上如下:【题目点拨】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20、见解析【解题分析】

(1)证明:∵DF∥AE,EF∥AD,∴四边形AEFD是平行四边形,∠2=∠AED,又∵DE平分∠ADC,∴∠1=∠2,∴∠AED=∠1.∴AD=AE.∴四边形AEFD是菱形.(2)在菱形AEFD中,∵∠DAB=60°,∴△AED为等边三角形.∴DE=2.连接AF,与DE相交于O,则.∴.∴.∴.21、27【解题分析】

设小王用自驾车方式上班平均每小时行驶x千米,根据已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的,可列方程求解.【题目详解】设小王用自驾车方式上班平均每小时行驶x千米由题意得:,解得x=27,经检验x=27是原方程的解.答:小王用自驾车方式上班平均每小时行驶27千米22、(1),直线的解析式为;(2)点的坐标为或;(3)的值为或或.【解题分析】

(1)将点坐标代入中,即可得出结论;将点,坐标代入中,即可得出结论;(2)先利用两三角形面积关系判断出,再分两种情况,即可得出结论;(3)分三种情况,利用两直线平行,相等或经过点讨论即可得出结论.【题目详解】解:(1)点在函数的图象上,,,直线过点、,可得方程组为,解得,直线的解析式为;故答案为:;(2)是与轴的交点,当时,,,坐标为,又的面积是面积的2倍,第一种情况,当在线段上时,,,即,∴,坐标,第二种情况,当在射线上时,,,,坐标,点的坐标为或;(3)、、不能围成三角形,直线经过点或或,①直线的解析式为,把代入到解析式中得:,,②当时,∵直线的解析式为,,③当时,∵直线的解析式为,,即的值为或或.【题目点拨】此题是一次函数综合题,主要考查了坐标轴上点的特点,待定系数法,三角形的面积的求法,用分类讨论的思想解决问题是解本题的关键.23、(1)在平面直角坐标系中画出△ABC如图所示,见解析;(2)△ABC的面积=1.【解题分析】

(1)在坐标系内描出各点,再顺次连接即可;(2)根据△ABC的面积等于正方形的面积减去3个三角形的面积求出即可.【题目详解】解:(1)在平面直角坐标系中画出△ABC如图所示:(2)△ABC的面积=6×6-×4×2-×2×6-×4×6=36-4-6-12=1.故答案为:(1)在平面直角坐标系中画出△ABC如图所示,见解析;(2)△ABC的面积=1.【题目点拨】本题考查坐标和图形的关系以及三角形的面积,找到各点的对应点,是解题的关键.24、(1)见解析;(2).【解题分析】

(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对顶角相等,利用ASA可得出三角形ABE与三角形FCE全等;进而得出AB=FC,即可得出四边形ABFC是平行四边形,再由直角三角形的判定方法得出△BFC是直角三角形,即可得出平行四边形ABFC是矩形.(2)由等边三角形的性质得出∠AFC=60°,AF=DF=4,得出CF=CD=2,由矩形的性质得出∠ACF=90°,得出AC=CF=2,即可得出四边形ABFC的面积=AC•CF=4.【题目详解】解:(1)∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(ASA);∴AE=EF,AB=CF,∴四边形ABFC是平行四边形,∵∠AEC=2∠ABC=∠ABC+∠BAE,∴∠ABC=BAE,∴AE=BE∵AE=EF,BE=CE,∴AF=BC,∴平行四边形ABFC是矩形;(2)∵△AFD是等边三角形,∴∠AFC=60°,AF=DF=4,∴CF=CD=2,∵四边形ABFC是矩形,∴∠ACF=90°,∴AC=CF=2,∴四边形ABFC的面积=AC•CF=.【题目点拨】此题主要考查了矩形的判定以及全等三角形的判定与性质等知识,根据已知得出AB=CF是解题关键.25、(1)当t=2时,四边形ANCP为平行四边形;(2)点B到AC的距离185;(3)存在,t=1,使四边形AQMK为菱形【解题分析】

(1)先判断出四边形CNPD为矩形,然后根据四边形ANCP为平行四边形得CN=AP,即可求出t值;(2)设点B到AC的距离d,利用勾股定理先求出AC,然后根据ΔABC面积不变求出点B到AC的距离;(3)由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6-t-2t=8-(6-t),求解即可.【题目详解】解:(1)根据题意可得,BN=t∵在四边形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴CN=DP=BC-BN=6-t∴AP=AD-DP=8-(6-t)=2+t∵四边形ANCP为平行四边形,CN=AP,∴6-t=2+t解得:t=2,∴当t=2时,四边形ANCP为平行四边形;(2)设点B到AC的距离d,在RtΔACD中,AC=C在ΔABC中,11∴d=∴点B到AC的距离18(3)存在.理由如下:∵将ΔAQM沿AD翻折得ΔAKM∵NP⊥AD   ∴当PM=PA时有四边形AQMK为菱形,∴6-t-2t=8-(6-t),解得t=1,∴t=1,使四边形AQMK为菱形.【题目点拨】本题主要考查了四边形综合题,其中涉及到矩形的判定与性质,勾股定理,菱形的判定等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.26、(1)①见解析;②60°;(1)见解析;(3)见解析.【解题分析】

(1)①由△DOE≌△BOF,推出EO=OF,由OB=OD,推出四边形EBFD是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论