浙江省杭州市萧山区城北片2024届八年级数学第二学期期末复习检测试题含解析_第1页
浙江省杭州市萧山区城北片2024届八年级数学第二学期期末复习检测试题含解析_第2页
浙江省杭州市萧山区城北片2024届八年级数学第二学期期末复习检测试题含解析_第3页
浙江省杭州市萧山区城北片2024届八年级数学第二学期期末复习检测试题含解析_第4页
浙江省杭州市萧山区城北片2024届八年级数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市萧山区城北片2024届八年级数学第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,正方形的两边,分别在平面直角坐标系的轴、轴的正半轴上正方形与正方形是以的中点为中心的位似图形,已知,,则正方形与正方形的相似比是()A. B. C. D.2.今年,重庆市南岸区广阳镇一果农李灿收获枇杷20吨,桃子12吨,现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.李灿安排甲、乙两种货车一次性地将水果运到销售地的方案数有()A.1种 B.2种 C.3种 D.4种3.在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A.3种B.4种C.5种D.6种4.函数自变量的值可以是()A.-1 B.0 C.1 D.25.如图,在ABCD中,AE⊥BC,垂足为E,AF⊥CD,垂足为F,若AE:AF=2:3,ABCD的周长为20,则AB的长为()A.4 B.5 C.6 D.86.已知二次函数y=ax2+bx+c的x与y的部分对应值如下表:x…-3-2-1113…y…-27-13-335-3…下列结论:①a<1;②方程ax2+bx+c=3的解为x1=1,x2=2;③当x>2时,y<1.其中所有正确结论的序号是()A.①②③ B.① C.②③ D.①②7.一元二次方程根的情况为()A.有两个相等的实数根 B.有两个正实数根C.有两个不相等的实数根 D.有两个负实数根8.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A. B.3 C.2 D.29.如图,正方形中,,连接交对角线于点,那么()A. B. C. D.10.如图,在中,,,,为边上一个动点,于点,上于点,为的中点,则的最小值是()A. B.C. D.11.如图,点在双曲线上,点在双曲线上,且轴,、在轴上,若四边形为矩形,则它的面积为()A.1 B.2 C.3 D.412.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A.23 B.24 C.25 D.无答案二、填空题(每题4分,共24分)13.若a=,则=_____.14.已知:,则_______.15.已知5个数的平均数为,则这六个数的平均数为___16.如图,已知中,,将绕点A逆时针方向旋转到的位置,连接,则的长为__________.17.请你写出一个一次函数,使它经过二、三、四象限_____.18.如图,正方形ABCD边长为1,若以正方形的边AB为对角线作第二个正方形AEBO1,再以边BE为对角线作第三个正方形EFBO2……如此作下去,则所作的第n个正方形面积Sn=________三、解答题(共78分)19.(8分)在数学兴趣小组活动中,小明将边长为2的正方形与边长为的正方形按如图1方式放置,与在同一条直线上,与在同一条直线上.(1)请你猜想与之间的数量与位置关系,并加以证明;(2)在图2中,若将正方形绕点逆时针旋转,当点恰好落在线段上时,求出的长;(3)在图3中,若将正方形绕点继续逆时针旋转,且线段与线段相交于点,写出与面积之和的最大值,并简要说明理由.20.(8分)如图,在中,,点、分别在边、上,且,,点在边上,且,联结.(1)求证:四边形是菱形;(2)如果,,求四边形的面积.21.(8分)关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.22.(10分)如下4个图中,不同的矩形ABCD,若把D点沿AE对折,使D点与BC上的F点重合;(1)图①中,若DE︰EC=2︰1,求证:△ABF∽△AFE∽△FCE;并计算BF︰FC;(2)图②中若DE︰EC=3︰1,计算BF︰FC=;图③中若DE︰EC=4︰1,计算BF︰FC=;(3)图④中若DE︰EC=︰1,猜想BF︰FC=;并证明你的结论23.(10分)如图,已知点E,F分别是平行四边形ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若AC=4,AB=5,求菱形AECF的面积.24.(10分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型目的地A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.25.(12分)将平行四边形纸片按如图方式折叠,使点与重合,点落到处,折痕为.(1)求证:;(2)连结,判断四边形是什么特殊四边形?证明你的结论.26.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?

参考答案一、选择题(每题4分,共48分)1、A【解题分析】

分别求出两正方形的对角线长度即可求解.【题目详解】由,得到C点(3,0)故AC=∵,正方形与正方形是以的中点为中心的位似图形,∴A’C’=AC-2AA’=∴正方形与正方形的相似比是A’C’:AC=1:3故选A.【题目点拨】此题主要考查多边形的相似比,解题的关键是熟知相似比的定义.2、C【解题分析】

设租用甲种货车x辆,则租用乙种货车(8-x)辆,根据8辆货车可一次将枇杷20吨、桃子12吨运完,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为整数即可得出结论.【题目详解】解:设租用甲种货车x辆,则租用乙种货车(8-x)辆,

依题意,得:解得:2≤x≤1.

∵x为整数,

∴x=2,3,1,

∴共有3种租车方案.

故选:C.【题目点拨】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.3、B【解题分析】【分析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①②;(2)两组对边相等③④;(3)一组对边平行且相等①③或②④,所以有四种组合.【题目详解】(1)①②,利用两组对边平行的四边形是平行四边形判定;(2)③④,利用两组对边相等的四边形是平行四边形判定;(3)①③或②④,利用一组对边平行且相等的四边形是平行四边形判定;共4种组合方法,故选B.【题目点拨】本题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.4、C【解题分析】

根据分母不能等于零,可得答案.【题目详解】解:由题意,得,解得,故选:C.【题目点拨】本题考查了函数自变量的取值范围,利用分母不能等于零得出不等式是解题关键.5、A【解题分析】

根据平行四边形的对边相等,可知一组邻边的和就是其周长的一半.根据平行四边形的面积,可知平行四边形的一组邻边的比和它的高成反比.【题目详解】解:∵四边形ABCD是平行四边形,

∴AB=CD,AD=BC,

∴BC+CD=10÷1=10,

根据平行四边形的面积公式,得BC:CD=AF:AE=3:1.

∴BC=6,CD=4,

∴AB=CD=4,

故选:A.【题目点拨】本题考查平行四边形的性质,平行四边形的一组邻边的和等于周长的一半,平行四边形的一组邻边的比和它的高的比成反比.6、D【解题分析】

根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.【题目详解】解:①由图表中数据可知:x=−1和3时,函数值为−3,所以,抛物线的对称轴为直线x=1,而x=1时,y=5最大,所以二次函数y=ax2+bx+c开口向下,a<1;故①正确;②∵二次函数y=ax2+bx+c的对称轴为x=1,在(1,3)的对称点是(2,3),∴方程ax2+bx+c=3的解为x1=1,x2=2;故②正确;③∵二次函数y=ax2+bx+c的开口向下,对称轴为x=1,(1,3)的对称点是(2,3),∴当x>2时,y<3;故③错误;所以,正确结论的序号为①②故选D.【题目点拨】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,有一定难度.熟练掌握二次函数图象的性质是解题的关键.7、C【解题分析】

根据方程的系数结合根的判别式,可得出△=8>0,由此即可得出原方程有两个不相等的实数根.【题目详解】解:∵在方程x2+2x-1=0中,△=22-4×1×(-1)=8>0,

∴方程x2+2x-1=0有两个不相等的实数根.

故选:C.【题目点拨】本题考查根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.8、B【解题分析】试题分析:由三角函数易得BE,AE长,根据翻折和对边平行可得△AEC1和△CEC1为等边三角形,那么就得到EC长,相加即可.解:连接CC1.在Rt△ABE中,∠BAE=30°,AB=,∴BE=AB×tan30°=1,AE=2,∠AEB1=∠AEB=60°,∵四边形ABCD是矩形∴AD∥BC,∴∠C1AE=∠AEB=60°,∴△AEC1为等边三角形,同理△CC1E也为等边三角形,∴EC=EC1=AE=2,∴BC=BE+EC=3,故选B.9、D【解题分析】

根据正方形的性质易证S△DEF∽S△AEB,再根据相似三角形的面积比为相似比的平方即可得解.【题目详解】解:∵四边形ABCD为正方形,∴∠EDF=∠EBA,∠EFD=∠EAB,AB=DC,∴,∵DC=3DF,∴DF:AB=1:3∴S△DEF:S△AEB=1:9.故选:D.【题目点拨】本题主要考查相似三角形的判定与性质,正方形的性质,解此题的关键在于熟练掌握其知识点.10、A【解题分析】

根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【题目详解】∵在△ABC中,AB=3,AC=4,BC=5,

∴AB2+AC2=BC2,

即∠BAC=90°.

又∵PE⊥AB于E,PF⊥AC于F,

∴四边形AEPF是矩形,

∴EF=AP.

∵M是EF的中点,

∴AM=EF=AP.

因为AP的最小值即为直角三角形ABC斜边上的高,即等于,

∴AM的最小值是

故选A.【题目点拨】本题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.11、B【解题分析】

根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【题目详解】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3−1=2.故选B.12、B【解题分析】

根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,1mn即四个直角三角形的面积和,从而不难求得(m+n)1.【题目详解】(m+n)1=m1+n1+1mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=14.故选B.【题目点拨】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.二、填空题(每题4分,共24分)13、1【解题分析】

根据二次根式的运算法则即可求出答案.【题目详解】∵a1,∴a﹣1,∴(a﹣1)1=3,a1=1(a+1),∴a1﹣1a=1,∴原式=.故答案为:1.【题目点拨】本题考查了二次根式,解题的关键是熟练运用二次根式的运算以及整式的运算,本题属于中等题型.14、【解题分析】

由题意设,再代入代数式求值即可.【题目详解】由题意设,,则【题目点拨】考查了代数式求值,本题属于基础应用题,只需学生熟练掌握代数式求值的方法,即可完成.15、【解题分析】

根据前5个数的平均数为m,可得这5个数的总和,加上第6个数0,利用平均数的计算公式计算可得答案.【题目详解】解:∵∴∴∴这六个数的平均数【题目点拨】此题主要考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是判断出:.16、【解题分析】

连接交于D,中,根据勾股定理得,,根据旋转的性质得:垂直平分为等边三角形,分别求出,根据计算即可.【题目详解】如图,连接交于D,如图,中,∵,∴,∵绕点A逆时针方向旋转到的位置,∴,∴垂直平分为等边三角形,∴,∴.故答案为:.【题目点拨】考查等腰直角三角形的性质,等边三角形的判定与性质,旋转的性质等,17、答案不唯一:如y=﹣x﹣1.【解题分析】

根据已知可画出此函数的简图,再设此一次函数的解析式为:y=kx+b,然后可知:k<0,b<0,即可求得答案.【题目详解】∵图象经过第二、三、四象限,∴如图所示.设此一次函数的解析式为:y=kx+b,∴k<0,b<0,∴此题答案不唯一:如y=﹣x﹣1.故答案为:答案不唯一:如y=﹣x﹣1.【题目点拨】本题考查了一次函数的性质.题目难度不大,注意数形结合思想的应用.18、【解题分析】

首先写出AB的长,再写出AE的长,再写出EF的长,从而来寻找规律,写出第n个正方形的长,再计算面积即可.【题目详解】根据题意可得AB=1,则正方形ABCD的面积为1AE=,则正方形AEBO1面积为EF=,则正方形EFBO2面积为因此可得第n个正方形面积为故答案为【题目点拨】本题主要考查正方形的性质,关键在于根据图形写出规律,应当熟练掌握.三、解答题(共78分)19、(1),,其理由见解析;(2);(3)6【解题分析】

(1)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应角相等得∠AGD=∠AEB,如图1所示,延长EB交DG于点H,利用等角的余角相等得到∠DHE=90°,利用垂直的定义即可得DG⊥BE;(2)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应边相等得到DG=BE,如图2,连接交于,则=°=,在Rt△AMD中,求出AO的长,即为DO的长,根据勾股定理求出GO的长,进而确定出DG的长,即为BE的长;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,即当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,即当点H与点A重合时,△BDH的高最大,即可确定出面积的最大值.【题目详解】(1)证明:,,其理由是:在正方形和正方形中,有,,,∴≌,∴,,∵,∴延长交于,则,∴.(2)解:在正方形和正方形中,有,,,∴∴≌,∴连接交于,则,∴,,∴∴(3)与面积之和的最大值为6,其理由是:对于,长一定,当到的长度最大时,的面积最大,由(1)(2))△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.【题目点拨】本题为几何变换综合题,(1)一般要问两条线段的关系,得分两个方面讨论,一个是长度关系,一个是位置关系(不是平行就是垂直),一般证明长度相等只需要证明三角形全等即可;(2)(1)中已经证明的结论一般为(2)作铺垫,所以只需要求出BE即可求出DG,这里因为出现直角三角形,所求线段的长度,用到了勾股定理;(3)这里主要用到直径所对的圆周角等于90°即可得到H同时在以BD和GH为直径的弦上,此时H在A处时,高最大,为圆的半径.20、(1)证明见解析;(2)1.【解题分析】

(1)由平行线的性质及等腰三角形的性质得出,进而有,通过等量代换可得出,然后利用一组对边平行且相等即可证明四边形是平行四边形,然后再利用即可证明四边形是菱形;(2)过点作交于点,在含30°的直角三角形中求出FG的长度,然后利用即可求出面积.【题目详解】(1),.,,,,.,.,,又,.又,四边形是平行四边形.又,四边形是菱形.(2)过点作交于点.四边形是菱形,且,.,.又,.在中,,,..【题目点拨】本题主要考查平行线的性质,等腰三角形的判定,菱形的判定及性质,掌握平行线的性质,等腰三角形的性质,含30°的直角三角形的性质,菱形的判定及性质是解题的关键.21、(1);(2).【解题分析】

(1)由题意,得;可再求m的取值范围;(2)比如取m=1.【题目详解】解:(1)由题意,得.解得.(2)答案不唯一.如:取m=1,此时方程为.解得.【题目点拨】本题考核知识点:一元二次方程根判别式.解题关键点:熟记一元二次方程根判别式的意义.22、(1)根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可,1:1;(2)1:2,1:3;(3)1︰(n-1)【解题分析】试题分析:根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可.解:(1)∵∠BAF+∠AFB=90°,∠CFE+∠AFB=90°∴∠BAF=∠CFE∵∠B=∠C=90°∴△ABF∽△FCE∴BF︰CE=AB︰FC=AF︰FE∴AB︰AF=BF︰FE∵∠B=∠AFE=90°∴△ABF∽△AFE∴△ABF∽△AFE∽△FCE∵DE︰EC=2︰1∴FE︰EC=2︰1∴BF︰FC=1︰1(2)若DE︰EC=3︰1,则BF︰FC=1︰2;若DE︰EC=4︰1,计算BF︰FC=1︰3;(3)∵DE︰EC=︰1∴FE︰EC=︰1∴BF︰FC=1︰(n-1).考点:相似三角形的综合题点评:相似三角形的综合题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.23、(1)见解析;(2)10.【解题分析】

(1)由平行四边形的性质可得BC=AD,BC∥AD,由中点的性质可得EC=AF,可证四边形AECF为平行四边形,由直角三角形的性质可得AE=EC,即可得结论;(2)可求S△ABC=12AB×AC=10,即可求菱形AECF【题目详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵点E,F分别是边BC,AD上的中点∴AF∥EC,AF=EC∴四边形AECF是平行四边形.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=12∴平行四边形AECF是菱形.(2)∵∠BAC=90°,AB=5,AC=4,∴S△ABC=12∵点E是BC的中点,∴S△AEC=12S△∵四边形AECF是菱形∴四边形AECF的面积=2S△AEC=10.【题目点拨】本题考查了菱形的判定和性质,直角三角形的性质,三角形的面积公式,熟练运用菱形的判定是本题的关键.24、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.【解题分析】

(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【题目详解】(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+1=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.25、(1)证明见解析;(2)四边形AECF是菱形.证明见解析.【解题分析】

(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠1,从而利用ASA判定△ABE≌△AD′F;(2)四边形AECF是菱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论