安徽省合肥市包河区第48中学2024届数学八下期末经典模拟试题含解析_第1页
安徽省合肥市包河区第48中学2024届数学八下期末经典模拟试题含解析_第2页
安徽省合肥市包河区第48中学2024届数学八下期末经典模拟试题含解析_第3页
安徽省合肥市包河区第48中学2024届数学八下期末经典模拟试题含解析_第4页
安徽省合肥市包河区第48中学2024届数学八下期末经典模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市包河区第48中学2024届数学八下期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.为了解某社区居民的用水情况,随机抽取20户居民进行调查,下表是所抽查居民2018年5月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是()居民(户数)128621月用水量(吨)458121520A.中位数是10(吨) B.众数是8(吨)C.平均数是10(吨) D.样本容量是202.如图:菱形ABCD的对角线AC,BD相交于点O,AC=,BD=,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,PG⊥BC于点G,四边形QEDH与四边形PFBG关于点O中心对称,设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,,若S1=S2,则的值是()A. B.或 C. D.不存在3.下面哪个点在函数y=2x+4的图象上()A.(2,1) B.(-2,1) C.(2,0) D.(-2,0)4.顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形 B.对角线相等的四边形C.矩形 D.对角线互相垂直的四边5.如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为A.1B.2C.3D.46.若直线经过第一、二、四象限,则直线的图象大致是()A. B.C. D.7.下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=8.下表记录了四名运动员参加男子跳高选拔赛成绩的平均数与方差:甲乙丙丁平均数173175175174方差3.53.512.515如果选一名运动员参加比赛,应选择()A.甲 B.乙 C.丙 D.丁9.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1) B.(1,﹣) C.(,﹣) D.(﹣,)10.下列说法正确的是()A.为了解昆明市中学生的睡眠情况,应该采用普查的方式B.数据2,1,0,3,4的平均数是3C.一组数据1,5,3,2,3,4,8的众数是3D.在连续5次数学周考测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定11.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的()A. B.C. D.12.若ab>0,ac<0,则一次函数的图象不经过下列个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,正方形的边长为2,点的坐标为.若直线与正方形有两个公共点,则的取值范围是____________.14.解方程:(1)2x2﹣5x+1=0(用配方法);(2)5(x﹣2)2=2(2﹣x).15.若关于的一元二次方程的一个根是,则的值是_______.16.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.17.如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线将图形分成面积相等的两部分,则直线的函数关系式为______________.18.如图,矩形ABCD中,AB=4,BC=8,对角线AC的垂直平分线分别交AD、BC于点E.F,连接CE,则△DCE的面积为___.三、解答题(共78分)19.(8分)如图,点是等边内一点,,,将绕点顺时针方向旋转得到,连接,.(1)当时,判断的形状,并说明理由;(2)求的度数;(3)请你探究:当为多少度时,是等腰三角形?20.(8分)先化简再求值:,其中a=-2。21.(8分)如图,在平面内,菱形ABCD的对角线相交于点O,点O又是菱形B1A1OC1的一个顶点,菱形ABCD≌菱形B1A1OC1,AB=BD=1.菱形B1A1OC1绕点O转动,求两个菱形重叠部分面积的取值范围,请说明理由.22.(10分)已知△ABC的三边长a、b、c满足|a-4|+(2b-12)2+=0,试判断△ABC的形状,并说明理由.23.(10分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.(1)当点E与点D重合时,△BDF的面积为;当点E为CD的中点时,△BDF的面积为.(2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;

(3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.24.(10分)如图,在□ABCD中,AB=10,AD=8,AC⊥BC,求□ABCD的面积.25.(12分)解不等式组:请结合题意填空,完成本题解答:(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为______.26.央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.

参考答案一、选择题(每题4分,共48分)1、A【解题分析】

根据中位数、众数、平均数和样本容量的定义对各选项进行判断.【题目详解】解:这组数据的中位数为8(吨),众数为8(吨),平均数=(1×4+2×5+8×8+6×12+2×15+1×1)=10(吨),样本容量为1.故选:A.【题目点拨】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数和中位数.2、A【解题分析】

根据对称性确定E、F、G、H都在菱形的边上,由于点P在BO上与点P在OD上求S1和S1的方法不同,因此需分情况讨论,由S1=S1和S1+S1=8可以求出S1=S1=2.然后在两种情况下分别建立关于x的方程,解方程,结合不同情况下x的范围确定x的值.【题目详解】①当点P在BO上,0<x≤1时,如图1所示.∵四边形ABCD是菱形,AC=2,BD=2,∴AC⊥BD,BO=BD=1,AO=AC=1,且S菱形ABCD=BD•AC=8.∴tan∠ABO==.∴∠ABO=60°.在Rt△BFP中,∵∠BFP=90°,∠FBP=60°,BP=x,∴sin∠FBP=.∴FP=x.∴BF=.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S△BFP=S△BGP=S△DEQ=S△DHQ.∴S1=2S△BFP=2××x•=x1.∴S1=8-x1.②当点P在OD上,1<x≤2时,如图1所示.∵AB=2,BF=,∴AF=AB-BF=2.在Rt△AFM中,∵∠AFM=90°,∠FAM=30°,AF=2-.∴tan∠FAM=.∴FM=(2-).∴S△AFM=AF•FM=(2-)•(2-)=(2-)1.∵四边形PFBG关于BD对称,四边形QEDH与四边形FPBG关于AC对称,∴S△AFM=S△AEM=S△CHN=S△CGN.∴S1=2S△AFM=2×(2-)1=(x-8)1.∴S1=8-S1=8-(x-8)1.综上所述:当0<x≤1时,S1=x1,S1=8-x1;当1<x≤2时,S1=8-(x-8)1,S1=(x-8)1.当点P在BO上时,0<x≤1.∵S1=S1,S1+S1=8,∴S1=2.∴S1=x1=2.解得:x1=1,x1=-1.∵1>1,-1<0,∴当点P在BO上时,S1=S1的情况不存在.当点P在OD上时,1<x≤2.∵S1=S1,S1+S1=8,∴S1=2.∴S1=(x-8)1=2.解得:x1=8+1,x1=8-1.∵8+1>2,1<8-1<2,∴x=8-1.综上所述:若S1=S1,则x的值为8-1.故选A.【题目点拨】本题考查了以菱形为背景的轴对称及轴对称图形的相关知识,考查了菱形的性质、特殊角的三角函数值等知识,还考查了分类讨论的思想.3、D【解题分析】

将四个选项中的点分别代入解析式,成立者即为函数图象上的点.【题目详解】A、将(2,1)代入解析式y=2x+4得,2×2+4=8≠1,故本选项错误;B、将(-2,1)代入解析式y=2x+4得,2×(-2)+4=0≠1,故本选项错误;C、将(2,0)代入解析式y=2x+1得,2×2+4=8≠0,故本选项错误;D、将(-2,0)代入解析式y=2x+1得,2×(-2)+4=0,故本选项正确;故选D.【题目点拨】本题考查了一次函数图象上点的坐标特征,将点的坐标代入解析式,解析式成立者即为正确答案.4、B【解题分析】试题分析:根据三角形中位线的性质及菱形的性质,可证四边形的对角线相等.解:如图所示,∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.即原四边形的对角线相等.故选B.点睛:本题主要考查中点四边形.画出图形,并利用三角形中位线与菱形的性质是解题的关键.5、C【解题分析】①使得BE与AE重合,即可构成邻边不等的矩形,如图:∵∠B=60°,∴AC=BC,∴CD≠BC.②使得CD与AD重合,即可构成等腰梯形,如图:③使得CD与DE重合,构成有两个角为锐角的是菱形,如图:故计划可拼出①②③.故选C.6、D【解题分析】

根据直线y=ax+b经过第一、二、四象限,可以判断a和b的正负,从而可以判断直线y=bx+a经过哪几个象限,本题得以解决.【题目详解】解:∵直线y=ax+b经过第一、二、四象限,

∴a<0,b>0,

∴y=bx+a经过第一、三、四象限,

故选:D.【题目点拨】本题考查一次函数的性质和图象,解答本题的关键是明确题意,利用一次函数的性质解答.7、C【解题分析】试题解析:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.考点:正比例函数的定义.8、B【解题分析】【分析】根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.【题目详解】∵=3.5,=3.5,=12.5,=15,∴=<<,∵=173,=175,=175,=174,∴=>>,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择乙,故选B.【题目点拨】本题考查了平均数和方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9、C【解题分析】试题解析:∵三角板绕原点O顺时针旋转75°,

∴旋转后OA与y轴夹角为45°,

∵OA=2,

∴OA′=2,

∴点A′的横坐标为2×=,

纵坐标为-2×=-,

所以,点A′的坐标为(,-)故选C.10、C【解题分析】

根据抽样调查、平均数、众数的定义及方差的意义解答可得.【题目详解】解:A、为了解昆明市中学生的睡眠情况,应该采用抽样调查的方式,此选项错误;B、数据2,1,0,3,4的平均数是2,此选项错误;C、一组数据1,5,3,2,3,4,8的众数是3,此选项正确;D、在连续5次数学周考测试中,两名同学的平均分相同,方差较小的同学数学成绩更稳定,此选项错误;故选C.【题目点拨】此题考查了抽样调查、平均数、众数和方差的定义.平均数是所有数据的和除以数据的个数.一组数据中出现次数最多的数据叫做众数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.11、A【解题分析】试题分析:正方形的对角线的长是,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.考点:正方形的性质,勾股定理.12、C【解题分析】

根据ab>0,ac<0,可以得到a、b、c的正负,从而可以判断一次函数的图象经过哪几个象限,不经过哪个象限,本题得以解决.【题目详解】解:∵ab>0,ac<0,∴当a>0时,b>0,c<0,当a<0时,b<0,c>0,∴当a>0时,b>0,c<0时,一次函数的图象经过第一、二、四象限,不经过第三象限,当a<0时,b<0,c>0时,一次函数的图象经过第一、二、四象限,不经过第三象限,由上可得,一次函数的图象不经过第三象限,故选:C.【题目点拨】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.二、填空题(每题4分,共24分)13、﹣1<b<1【解题分析】

当直线y=x+b过D或B时,求得b,即可得到结论.【题目详解】∵正方形ABCD的边长为1,点A的坐标为(1,1),∴D(1,3),B(3,1).当直线y=x+b经过点D时,3=1+b,此时b=1.当直线y=x+b经过点B时,1=3+b,此时b=﹣1.所以,直线y=x+b与正方形有两个公共点,则b的取值范围是﹣1<b<1.故答案为﹣1<b<1.【题目点拨】本题考查了一次函数图象上点的坐标特征,正方形的性质,关键是掌握待定系数法正确求出函数的解析式.14、(1)x1=,x2=;(2)x1=2,x2=【解题分析】

(1)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解;(2)移项后分解因式,即可可得出两个一元一次方程,求出方程的解即可.【题目详解】解:(1),(2),,【题目点拨】本题考查了利用配方法、因式分解法解一元二次方程,正确计算是解题的关键.15、【解题分析】

把x=0代入方程(a-1)x2+x+a2-1=0得a2-1=0,然后解关于a的方程后利用一元二次方程的定义确定满足条件的a的值.【题目详解】解:把x=0代入方程(a-1)x2+x+a2-1=0得a2-1=0,解得a1=1,a2=-1,而a-1≠0,所以a=-1.故答案为:-1.【题目点拨】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16、(9,0)【解题分析】

根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).17、【解题分析】

设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.【题目详解】设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C∴OB=3∵经过原点的直线将图形分成面积相等的两部分∴直线上方面积分是4∴三角形ABO的面积是5∴∴∴直线经过点设直线l为则∴直线的函数关系式为【题目点拨】本题考查了一次函数,难点在于利用已知条件中的面积关系,熟练掌握一次函数相关知识点是解题关键.18、6【解题分析】

根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算,再利用三角形面积公式解答即可.【题目详解】∵四边形ABCD是矩形,∴CD=AB=4,AD=BC=8,∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD−AE=8−x,在Rt△CDE中,CE=CD+ED,即x=4+(8−x),解得:x=5,即CE的长为5,DE=8−5=3,所以△DCE的面积=×3×4=6,故答案为:6.【题目点拨】此题考查线段垂直平分线的性质,矩形的性质,解题关键在于得出AE=CE.三、解答题(共78分)19、(1)为直角三角形,理由见解析;(2);(3)当为或或时,为等腰三角形.【解题分析】

(1)由旋转可以得出和均为等边三角形

,再根据求出,进而可得为直角三角形;(2)因为进而求得,根据,即可求出求的度数;(3)由条件可以表示出∠AOC=250°-a,就有∠AOD=190°-a,∠ADO=a-60°,当∠DAO=∠DOA,∠AOD=ADO或∠OAD=∠ODA时分别求出a的值即可.【题目详解】解:(1)为直角三角形,理由如下:绕顺时针旋转得到,和均为等边三角形,,,,,为直角三角形;(2)由(1)知:,,,,;(3)∵∠AOB=110°,∠BOC=α∴∠AOC=250°-a.∵△OCD是等边三角形,∴∠DOC=∠ODC=60°,∴∠ADO=a-60°,∠AOD=190°-a,当∠DAO=∠DOA时,2(190°-a)+a-60°=180°,解得:a=140°当∠AOD=ADO时,190°-a=a-60°,解得:a=125°,当∠OAD=∠ODA时,190°-a+2(a-60°)=180°,解得:a=110°∴α=110°,α=140°,α=125°.【题目点拨】本题考查了等边三角形的判定与性质的运用,旋转的性质的运用,直角三角形的判定,全等三角形的判定及性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.20、,3【解题分析】

可先对括号内,进行化简约分,对括号外除法化乘法,然后对括号内同分母分式加法进行计算,最后进行约分即可得到化简之后的结果,将a=-2代入化简之后的结果进行计算.【题目详解】原式=当a=-2,原式=3【题目点拨】本题考查分式的化简求值,对于分式的化简在运算过程中要根据运算法则注意运算顺序,在化简过程中可先分别对分母分子因式分解,再进行约分计算.21、≤s.【解题分析】

分别求出重叠部分面积的最大值,最小值即可解决问题【题目详解】如图1中,∵四边形ABCD是菱形,∴AB=AD,∵AB=BD,∴AB=BD=AD=1,∴△ABD是等边三角形,当AE=EB,AF=FD时,重叠部分的面积最大,最大面积=S△ABD=××12=,如图2中,当OA1与BC交于点E,OC1交AB与F时,作OG⊥AB与G,OH⊥BC于H.易证△OGF≌△OHE,∴S四边形BEOF=S四边形OGBH=×=,观察图象图象可知,在旋转过程中,重叠部分是三角形时,当点E与B重合,此时三角形的面积最小为,综上所述,重叠部分的面积S的范围为≤s≤.【题目点拨】本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.声明:本试题解析著作权属所有,未经书面同意,不得复制发布22、△ABC为直角三角形,理由见解析.【解题分析】

根据绝对值、平方、二次根式的非负性即可列出式子求出a,b,c的值,再根据勾股定理即可判断.【题目详解】△ABC为直角三角形,理由,由题意得a-4=0.2b-12=0,10-c=0,所以a=8、b=6,c=10.所以a2+b2=c2,△ABC为直角三角形.【题目点拨】此题主要考查勾股定理的应用,解题的关键是根据非负性求出各边的长.23、(1)1,1;(2)S△BDF=S正方形ABCD,证明见解析;(3)2【解题分析】

(1)根据三角形的面积公式求解;(2)连接CF,通过证明BD∥CF,可得S△BDF=S△BDC=S正方形ABCD;(3)根据S△BDF=S△BDC可得S△BCH=S△DFH=,由三角形面积公式可求CH,DH的长,再由三角形面积公式求出EF的长即可.【题目详解】(1)∵当点E与点D重合时,

∴CE=CD=6,

∵四边形ABCD,四边形CEFG是正方形,

∴DF=CE=AD=AB=6,

∴S△BDF=×DF×AB=1,当点E为CD的中点时,如图,连接CF,∵四边形ABCD和四边形CEFG均为正方形;

∴∠CBD=∠GCF=25°,

∴BD∥CF,

∴S△BDF=S△BDC=S正方形ABCD=×6×6=1,故答案为:1,1.(2)S△BDF=S正方形ABCD,证明:连接CF.∵四边形ABCD和四边形CEFG均为正方形;∴∠CBD=∠GCF=25°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论