版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市武侯区2024届八年级数学第二学期期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在平行四边形ABCD中,点E在边DC上,联结AE并延长交BC的延长线于点F,若AD=3CF,那么下列结论中正确的是()A.FC:FB=1:3 B.CE:CD=1:3 C.CE:AB=1:4 D.AE:AF=1:1.2.已知样本数据,,,,,,则下列说法不正确的是()A.平均数是 B.中位数是 C.众数是 D.方差是3.下列各组数是勾股数的是()A.2,3,4B.4,5,6C.3.6,4.8,6D.9,40,414.用配方法解方程时,配方变形结果正确的是()A. B. C. D.5.在矩形ABCD中,AB=3,BC=2,点E在BC边上,连接DE,将△DEC沿DE翻折,得到△DEC',C'E交AD于点F,连接AC'.若点F为AD的中点,则AC′的长度为()A. B.2 C.2 D.+16.如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,若AC⊥BD则四边形EFGH为()A.平行四边形 B.菱形 C.矩形 D.正方形7.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形8.如图,正方形ABCD的边长为1,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为()A. B. C. D.9.方程x(x-6)=0的根是()A.x1=0,x2=-6 B.x1=0,x2=6 C.x=6 D.x=010.函数自变量的值可以是()A.-1 B.0 C.1 D.211.若一个多边形每一个内角都是135º,则这个多边形的边数是()A.6 B.8 C.10 D.1212.将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=﹣3x+2 B.y=﹣3x﹣2 C.y=﹣3(x+2) D.y=﹣3(x﹣2)二、填空题(每题4分,共24分)13.把长为20,宽为a的长方形纸片(10<a<20),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的长方形为正方形,则操作停止.当n=3时,a的值为________.14.等腰梯形的上底是10cm,下底是16cm,高是4cm,则等腰梯形的周长为______cm.15.若点和点都在一次函数的图象上,则________(选择“”、“”、“”填空).16.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.17.二次根式的值是________.18.命题“全等三角形的对应角相等”的逆命题是____________________________这个逆命题是______(填“真”或“假”)三、解答题(共78分)19.(8分)某校为了改善办公条件,计划从厂家购买A、B两种型号电脑。已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同.(1)求A、B两种型号电脑每台价格各为多少万元?(2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,则最多可购买A种型号电脑多少台?20.(8分)如图,在平面直角坐标系xoy中,矩形OABC的顶点B坐标为(12,5),点D在CB边上从点C运动到点B,以AD为边作正方形ADEF,连BE、BF,在点D运动过程中,请探究以下问题:(1)△ABF的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;(2)若△BEF为等腰三角形,求此时正方形ADEF的边长;(3)设E(x,y),直接写出y关于x的函数关系式及自变量x的取值范围.21.(8分)在学校组织的八年级知识竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)求一班参赛选手的平均成绩;(2)此次竞赛中,二班成绩在级以上(包括级)的人数有几人?(3)求二班参赛选手成绩的中位数.22.(10分)如图,点E,F在矩形的边AD,BC上,点B与点D关于直线EF对称.设点A关于直线EF的对称点为G.(1)画出四边形ABFE关于直线EF对称的图形;(2)若∠FDC=16°,直接写出∠GEF的度数为;(3)若BC=4,CD=3,写出求线段EF长的思路.23.(10分)如图①,在平面直角坐标系中,直线y=−12x+2与交坐标轴于A,B两点.以AB为斜边在第一象限作等腰直角三角形ABC,C为直角顶点,连接OC.(1)求线段AB的长度(2)求直线BC的解析式;(3)如图②,将线段AB绕B点沿顺时针方向旋转至BD,且,直线DO交直线y=x+3于P点,求P点坐标.24.(10分)如图,正方形,点为射线上的一个动点,点为的中点,连接,过点作于点.(1)请找出图中一对相似三角形,并证明;(2)若,以点为顶点的三角形与相似,试求出的长.25.(12分)已知:如图,AM是△ABC的中线,D是线段AM的中点,AM=AC,AE∥BC.求证:四边形EBCA是等腰梯形.26.某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量与时间成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,(1)写出药物燃烧前后,y与x之间的函数表达式;(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?
参考答案一、选择题(每题4分,共48分)1、C【解题分析】试题解析:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=DC∴△ADE∽△FCE∴AD:FC=AE:FE=DE:CE∵AD=3FC∴AD:FC=3:1∴FC:FB=1:4,故A错误;∴CE:CD=1:4,故B错误;∴CE:AB=CE:CD=1:4,故C正确;∴AE:AF=3:4,故D错误.故选C.2、D【解题分析】
要求平均数只要求出数据之和再除以总个数即可;根据中位数的定义可求出;对于极差是最大值与最小值的差;方差是样本中各数据与样本平均数的差的平方和的平均数.【题目详解】在已知样本数据1,1,4,3,5中,平均数是3;
根据中位数的定义,中位数是3,众数是3方差=1.所以D不正确.
故选:D.【题目点拨】本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.3、D【解题分析】利用勾股数的定义进行判断.A选项,42≠22+32,故2,3,4不是勾股数;B选项,62≠42+52,故4,5,6不是勾股数;C选项,3.6,4.8不是正整数,故不是勾股数;D选项,三数均为正整数,且412=92+402,故9,40,41是勾股数.故选D.4、C【解题分析】
根据配方法的步骤先把常数项移到等号的右边,再在等式两边同时加上一次项系数一半的平方,配成完全平方的形式,从而得出答案.【题目详解】∵∴x2+6x=1,∴x2+6x+9=1+9,∴(x+3)2=10;故选:C.【题目点拨】本题考查了配方法解一元二次方程,掌握配方法的步骤是解题的关键;配方法的一般步骤是:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.5、A【解题分析】
过点C'作C'H⊥AD于点H,由折叠的性质可得CD=C'D=3,∠C=∠EC'D=90°,由勾股定理可求C'F=1,由三角形面积公式可求C'H的长,再由勾股定理可求AC'的长.【题目详解】解:如图,过点C'作C'H⊥AD于点H,∵点F为AD的中点,AD=BC=2∴AF=DF=∵将△DEC沿DE翻折∴CD=C'D=3,∠C=∠EC'D=90°在Rt△DC'F中,C'F=∵S△C'DF=∴×C'H=1×3∴C'H=∴FH=∴AH=AF+FH=在Rt△AC'H中,AC'=故选:A.【题目点拨】本题考查了矩形中的折叠问题、勾股定理,熟练掌握矩形的性质及勾股定理的运用是解题的关键.6、C【解题分析】
先由三角形的中位线得到四边形EFGH是平行四边形,再证明EH⊥EF,由此证得四边形EFGH为矩形.【题目详解】如图,连接AC、BD,∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴HG∥AC,EF∥AC,且,EH∥BD,∴HG∥EF,HG=EF,∴四边形EFGH是平行四边形,∵AC⊥BD,∴EH⊥EF,∴四边形EFGH为矩形.故选:C.【题目点拨】此题考查平行四边形的判定,矩形的判定,这里的连线是关键,由连接对角线将四边形分为了三角形,再根据中点证得平行四边形,进而证得矩形.7、D【解题分析】
分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【题目详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C、四条边都相等的四边形是菱形,符合菱形的判定,,故本选项正确,不符合题意;D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D.【题目点拨】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.8、B【解题分析】
根据题意求出面积标记为S2的等腰直角三角形的直角边长,得到S2,同理求出S3,根据规律解答.【题目详解】∵正方形ABCD的边长为1,∴面积标记为S2的等腰直角三角形的直角边长为,则S2=面积标记为S3的等腰直角三角形的直角边长为×=,则S3=……则S2018的值为:,故选:B.【题目点拨】本题考查的是勾股定理、正方形的性质,根据勾股定理求出等腰直角三角形的边长是解题的关键.9、B【解题分析】
根据因式分解,原方程转化为x=0或x-6=0,然后解两个一次方程即可得答案.【题目详解】解:x(x-6)=0,x=0或x-6=0,∴x1=0,x2=6,故选B.【题目点拨】本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的解法是关键.10、C【解题分析】
根据分母不能等于零,可得答案.【题目详解】解:由题意,得,解得,故选:C.【题目点拨】本题考查了函数自变量的取值范围,利用分母不能等于零得出不等式是解题关键.11、B【解题分析】试题分析:设多边形的边数为n,则=135,解得:n=8考点:多边形的内角.12、A【解题分析】
根据平移规律“上加下减”,即可找出平移后的函数关系式.【题目详解】解:根据平移的规律可知:平移后的函数关系式为y=﹣3x+1.故选:A.【题目点拨】本题考查了一次函数图象与几何变换,运用平移规律“左加右减,上加下减”是解题的关键.二、填空题(每题4分,共24分)13、12或2【解题分析】
根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当10<a<1时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1-a,a.由1-a<a可知,第二次操作时所得正方形的边长为1-a,剩下的矩形相邻的两边分别为1-a,a-(1-a)=2a-1.由于(1-a)-(2a-1)=40-3a,所以(1-a)与(2a-1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1-a>2a-1;②1-a<2a-1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值.【题目详解】由题意,可知当10<a<1时,第一次操作后剩下的矩形的长为a,宽为1-a,所以第二次操作时正方形的边长为1-a,第二次操作以后剩下的矩形的两边分别为1-a,2a-1.此时,分两种情况:①如果1-a>2a-1,即a<,那么第三次操作时正方形的边长为2a-1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1-a,即2a-1=(1-a)-(2a-1),解得a=12;②如果1-a<2a-1,即a>,那么第三次操作时正方形的边长为1-a.则1-a=(2a-1)-(1-a),解得a=2.故答案为:12或2.14、1.【解题分析】
首先根据题意画出图形,过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了.【题目详解】解:过A,D作下底BC的垂线,
则BE=CF=(16-10)=3cm,
在直角△ABE中根据勾股定理得到:
AB=CD==5,
所以等腰梯形的周长=10+16+5×2=1cm.
故答案为:1.【题目点拨】本题考查等腰梯形的性质、勾股定理.注意掌握数形结合思想的应用.15、【解题分析】
可以分别将x=1和x=2代入函数算出的值,再进行比较;或者根据函数的增减性,判断函数y随x的变化规律也可以得出答案.【题目详解】解:∵一次函数∴y随x增大而减小∵1<2∴故答案为:【题目点拨】本题考查一次函数的增减性,熟练掌握一次函数增减性的判断是解题关键.16、【解题分析】
如图,在Rt△ADF和Rt△AEF中,AD=AE,AF=AF,∴≌(),故,因为是正方形的对角线,故,故∠FAD=22.5°,故答案为22.5.17、1【解题分析】
根据二次根式的性质进行化简即可得解.【题目详解】=|-1|=1.故答案为:-1.【题目点拨】此题主要考查了二次根式的化简,注意:.18、对应角相等的三角形是全等三角形假【解题分析】
把原命题的题设和结论作为新命题的结论和题设就得逆命题.【题目详解】命题“全等三角形的对应角相等”的逆命题是“对应角相等的三角形是全等三角形”;对应角相等的三角形不一定是全等三角形,这个逆命题是假命题.故答案为(1).对应角相等的三角形是全等三角形(2).假【题目点拨】本题考核知识点:互逆命题.解题关键点:注意命题的形式.三、解答题(共78分)19、(1)A、B两种型号电脑每台价格分别是0.1万元和0.4万元;(2)最多可购买A种型号电脑12台.【解题分析】
(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x﹣0.1)万元.根据“用10万元购买A种型号电脑的数量与用8万购买B种型号电脑的数量相同”列出方程,解方程即可求解;(2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.根据“用不多于9.2万元的资金购进这两种电脑20台”列出不等式,解不等式即可求解.【题目详解】(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x﹣0.1)万元.根据题意得:,解得:x=0.1.经检验:x=0.1是原方程的解,x﹣0.1=0.4答:A、B两种型号电脑每台价格分别是0.1万元和0.4万元.(2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.根据题意得:0.1y+0.4(20﹣y)≤9.2.解得:y≤12,∴最多可购买A种型号电脑12台.答:最多可购买A种型号电脑12台.【题目点拨】本题考查了分式方程的应用和一元一次不等式的应用.分析题意,找到合适的数量关系是解决问题的关键.20、(1)不变,252,理由见解析;(2)55或52或525;(3)y=-x+22(5≤【解题分析】
(1)由“SAS”可证△ABD≌△FHA,可得HF=AB=5,即可求△ABF的面积;(2)分三种情况讨论,由等腰三角形的性质和勾股定理可求正方形ADEF的边长;(3)由全等三角形的性质,DH=AB=5,EH=DB,可得y=EH+5=DB+5,x=12-DB+DH=17-DB,即可求y关于x的函数关系式.【题目详解】解:(1)作FH⊥AB交AB延长线于H,∵正方形ADEF中,AD=AF,∠DAF=90°,∴∠DAH+∠FAH=90°.∵∠H=90°,∴∠FAH+∠AFH=90°,∴∠DAH=∠AFH,∵矩形OABC中,AB=5,∠ABD=90°,∴∠ABD=∠H∴△ABD≌△FHA,∴FH=AB=5,∴S△AEF(2)①当EB=EF时,作EG⊥CB∵正方形ADEF中,ED=EF,∴ED=EB,∴DB=2DG,同(1)理得△ABD≌△GDE,∴DG=AB=5,∴DB=10,∴AD=B②当EB=BF时,∠BEF=∠BFE,∵正方形ADEF中,ED=AF,∠DEF=∠AFE=90°,∴∠BED=∠BFA,∴△ABF≌△DBE,∴BD=AB=5,∵矩形OABC中,∠ABD=90°,∴AD=B③当FB=FE时,作FQ⊥AB,同理得BQ=AQ=52,BD=AQ=5∴AD=B(3)当5≤x≤12时,如图,
由(2)可知DH=AB=5,EH=DB,且E(x,y),∴y=EH+5=DB+5,x=12-DB+DH=17-DB,∴y=22-x,当12<x≤17时,如图,
同理可得:x=12-DB+5=17-DB,y=DB+5,∴y=22-x,综上所述:当5≤x≤17时,y=22-xy=-x+22(5≤x≤17).【题目点拨】本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.21、(1)分;(2)人;(3)80分【解题分析】
(1)根据算术平均数的定义列式计算可得;
(2)总人数乘以A、B、C等级所占百分比即可;
(3)根据中位数的定义求解即可.【题目详解】解:(1)一班参赛选手的(分)(2)二班成绩在级以上(含级)(人)(3)二班、人数占,参赛学生共有20人,因此中位数落在C级,二班参赛选手成绩的中位数为80分.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22、(1)见解析;(2)127°;(3)见解析.【解题分析】
(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)利用翻折变换的性质结合平行线的性质得出∠1度数进而得出答案;(3)利用翻折变换的性质结合勾股定理得出答案.【题目详解】(1)如图所示:(2)∵∠FDC=16°,∴∠DFC=74°,由对称性得,∠1=∠2=180°∵AD∥BC,∴∠AEF=∠GEF=180°-53°=127°;故答案为:127°.(3)思路:a.连接BD交EF于点O.b.在Rt△DFC中,设FC=x,则FD=4-x,由勾股定理,求得FD长;c.Rt△BDC中,勾股可得BD=5,由点B与点D的对称性可得OD的长;d.在Rt△DFO中,同理可求OF的长,可证EF=2OF,求得EF的长.【题目点拨】此题主要考查了翻折变换以及矩形的性质,正确掌握翻折变换的性质是解题关键.23、(1);(2);(3)P点的坐标是.【解题分析】
(1)先确定出点A,B坐标,利用勾股定理计算即可;(2)如图1中,作CE⊥x轴于E,作CF⊥y轴于F,进而判断出,即可判断出四边形OECF是正方形,求出点C坐标即可解决问题.(3)如图2中,先判断出点B是AM的中点,进而求出M的坐标,即可求出DP的解析式,联立成方程组求解即可得出结论.【题目详解】解:(1)∵直线交坐标轴于A、B两点.∴令,,∴B点的坐标是,,令,,∴A点的坐标是,,根据勾股定理得:.(2)如图,作CE⊥x轴于E,作CF⊥y轴于F,∴四边形OECF是矩形.∵是等腰直角三角形,,,,,,,.∴四边形OECF是正方形,,,,.∴C点坐标设直线BC的解析式为:,∴将、代入得:,解得:,.∴直线BC的解析式为:.(3)延长AB交DP于M,由旋转知,BD=AB,∴∠BAD=∠BDA,∵AD⊥DP,∴∠ADP=90°,∴∠BDA+∠BDM=90°,∠BAD+∠AMD=90°,∴∠AMD=∠BDM,∴BD=BM,∴BM=AB,∴点B是AM的中点,∵A(4,0),B(0,2),∴M(−4,4),∴直线DP的解析式为y=−x,∵直线DO交直线y=x+3于P点,将直线与联立得:解得:∴P点的坐标是.【题目点拨】此题是一次函数综合题,主要考查了待定系数法求函数解析式,一次函数的图像和性质,全等三角形的判定和性质,等腰三角形的判定和性质等,解(2)的关键是求出点C的坐标,解(3)的关键是证明点B是AM的中点,求出直线DP的解析式.24、(1),见解析;(2)或.【解题分析】
(1)通过等角转换,可得出三角相等,即可判定;(2)首先根据已知条件求出DQ,由三角形相似的性质,列出方程,即可得解,注意分两种情况讨论.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《静脉输液治疗规范》课件
- 2023年辽宁省盘锦市公开招聘警务辅助人员(辅警)笔试冲刺自测题二卷含答案
- 2023年湖南省娄底市公开招聘警务辅助人员(辅警)笔试摸底备战测试(3)卷含答案
- 2022年黑龙江省大兴安岭地区公开招聘警务辅助人员(辅警)笔试自考练习卷一含答案
- 《服装类别与要求》课件
- 《汽车营销技术》课件第11章
- 《神经网络》课件第11章
- 《机械制造技术实验教程》课件实验1~实验8
- ABB工业机器人应用技术 课件 2.6系统输入输出与IO信号的关联
- 2024年售后服务与销售协议2篇
- 河北事业单位改革方案
- 《法理学》(第三版教材)形成性考核作业1234答案
- 二次放行课件(签派)
- 《人际关系与沟通技巧》(第3版)-教学大纲
- 医疗机构医疗设备、医用耗材管理质量控制考核评价准则
- 数显千分尺作业指导书
- 中国共产主义青年团团员发展过程纪实簿
- 传热学(哈尔滨工程大学)智慧树知到课后章节答案2023年下哈尔滨工程大学
- 2014光伏发电站功率控制能力检测技术规程
- 第15课 有创意的书(说课稿)2022-2023学年美术四年级上册 人教版
- 2023年上海交通大学827材料科学基础试题
评论
0/150
提交评论