2024届四川省遂宁二中学数学八下期末综合测试模拟试题含解析_第1页
2024届四川省遂宁二中学数学八下期末综合测试模拟试题含解析_第2页
2024届四川省遂宁二中学数学八下期末综合测试模拟试题含解析_第3页
2024届四川省遂宁二中学数学八下期末综合测试模拟试题含解析_第4页
2024届四川省遂宁二中学数学八下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省遂宁二中学数学八下期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,平行四边形ABCD中,AE平分∠BAD,若CE=4cm,AD=5cm,则平行四边形ABCD的周长是()A.25cm B.20cm C.28cm D.30cm2.下列各式成立的是()A. B. C. D.3.若顺次连结四边形各边中点所得的四边形是菱形,则原四边形()A.一定是矩形 B.一定是菱形 C.对角线一定互相垂直 D.对角线一定相等4.下列各组数中,不能作为直角三角形的三边长的是()A.1.5,2,3 B.6,8,10 C.5,12,13 D.15,20,255.下列二次根式中是最简二次根式的是()A. B. C. D.6.若的整数部分为x,小数部分为y,则的值是()A. B. C.1 D.37.不等式组的解集在数轴上表示正确的是A. B. C. D.8.若y=x+2–b是正比例函数,则b的值是()A.0 B.–2 C.2 D.–0.59.小华、小明两同学在同一条长为1100米的直路上进行跑步比赛,小华、小明跑步的平均速度分别为3米/秒和5米/秒,小明从起点出发,小华在小明前面200米处出发,两人同方向同时出发,当其中一人到达终点时,比赛停止.设小华与小明之间的距离y(单位:米),他们跑步的时间为x(单位:秒),则表示y与x之间的函数关系的图象是().A. B. C. D.10.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD二、填空题(每小题3分,共24分)11.若关于的两个方程与有一个解相同,则__________.12.如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为____.13.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.14.若关于x的方程产生增根,那么m的值是______.15.如图,正方形ABCD的边长为a,E是AB的中点,CF平分∠DCE,交AD于F,则AF的长为______.

16.若关于有增根,则_____;17.如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.若△BCD是等腰三角形,则四边形BDFC的面积为_______________。

18.如图,在△ABC中,点D,E,F分别是△ABC的边AB,BC,AC上的点,且DE∥AC,EF∥AB,要使四边形ADEF是正方形,还需添加条件:__________________.三、解答题(共66分)19.(10分)解方程:(1)(2)20.(6分)因式分解:(1)a(m﹣1)+b(1﹣m).(1)(m1+4)1﹣16m1.21.(6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为(单位:吨/小时),卸完这批货物所需的时间为(单位:小时).(1)求关于的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?22.(8分)把下列各式因式分解:(1)x﹣xy2(2)﹣6x2+12x﹣623.(8分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:()若商场预计进货款为元,则这两种台灯各购进多少盏?()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?24.(8分)如图,在菱形ABCD中,AC、BD交于点O,AD=15,AO=1.动点P以每秒2个单位的速度从点A出发,沿AC向点C匀速运动.同时,动点Q以每秒1个单位的速度从点D出发,沿DB向点B匀速运动.当其中有一点列达终点时,另一点也停止运动,设运动的时间为t秒.(1)求线段DO的长;(2)设运动过程中△POQ两直角边的和为y,请求出y关于t的函数解析式;(3)请直接写出点P在线段OC上,点Q在线段DO上运动时,△POQ面积的最大值,并写出此时的t值.25.(10分)先化简再求值:,其中a=3.26.(10分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.服装进价(元/件)售价(元/件)A80120B6090其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

只要证明AD=DE=5cm,即可解决问题.【题目详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=5cm,CD=AB,∴∠EAB=∠AED,∵∠EAB=∠EAD,∴∠DEA=∠DAE,∴AD=DE=5cm,∵EC=4cm,∴AB=DC=9cm,∴四边形ABCD的周长=2(5+9)=28(cm),故选C.【题目点拨】本题考查平行四边形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、D【解题分析】

直接利用二次根式的性质分别化简得出答案.【题目详解】解:A、,故此选项错误;

B、,故此选项错误;

C、,故此选项错误;

D、,正确.

故选:D.【题目点拨】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.3、D【解题分析】

试题分析:菱形的四条边都相等,根据三角形中位线的性质可得原四边形的对角线一定相等.考点:菱形的性质【题目详解】因为菱形的各边相等,根据四边形的中位线的性质可得原四边形的对角线一定相等,故选D.4、A【解题分析】

只要验证两小边的平方和是否等于最长边的平方即可判断三角形是不是直角三角形,据此进行判断.【题目详解】解:A、(1.5)2+22≠32,不能构成直角三角形,故本选项符合题意;B、62+82=100=102,能构成直角三角形,故本选项不符合题意;C、52+122=169=132,能构成直角三角形,故本选项不符合题意;D、152+202=252,能构成直角三角形,故本选项符合题意;故选A.【题目点拨】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.5、A【解题分析】

根据最简二次根式的定义判断即可.【题目详解】A.是最简二次公式,故本选项正确;B.=不是最简二次根式,故本选项错误;C.=不是最简二次根式,故本选项错误;D.=不是最简二次根式,故本选项错误.故选A.【题目点拨】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.6、C【解题分析】因为,所以的整数部分为1,小数部分为,即x=1,,所以.7、C【解题分析】试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,不等式组的解集﹣2≤x<1在数轴上表示为C.故选C.8、C【解题分析】

根据正比例函数的定义可得关于b的方程,解出即可.【题目详解】解:由正比例函数的定义可得:2-b=0,解得:b=2.故选C.【题目点拨】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.9、D【解题分析】试题分析:跑步时间为x秒,当两人距离为0时,即此时两个人在同一位置,此时,即时,两个人距离为0,当小华到达终点时,小明还未到达,小华到达终点的时间为s,此时小明所处的位置为m,两个人之间的距离为m。考点:简单应用题的函数图象点评:此题较为简单,通过计算两个人相遇时的时间,以及其中一个人到达终点后,两个人之间的距离,即可画出图象。10、C【解题分析】

根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【题目详解】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.二、填空题(每小题3分,共24分)11、1【解题分析】

首先解出一元二次方程的解,根据两个方程的解相同,把x的值代入第二个方程中,解出a即可.【题目详解】解:解方程得x1=2,x2=−1,∵x+1≠0,∴x≠−1,把x=2代入中得:,解得:a=1,故答案为1.【题目点拨】此题主要考查了解一元二次方程,以及解分式方程,关键是正确确定x的值,分式方程注意分母要有意义.12、1【解题分析】

先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【题目详解】解:∵四边形ABCD是矩形,AD=8,

∴BC=8,

∵△AEF是△AEB翻折而成,

∴BE=EF=3,AB=AF,△CEF是直角三角形,

∴CE=8-3=5,

在Rt△CEF中,设AB=x,

在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,

解得x=1,则AB=1.

故答案为:1.【题目点拨】本题考查了翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.13、2【解题分析】

把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.【题目详解】∵2=1×2,∴F(2)=,故(1)是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).故答案为2.【题目点拨】本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).14、1【解题分析】

分式方程去分母转化为整式方程,根据分式方程有增根得到x-2=0,将x=2代入整式方程计算即可求出m的值.【题目详解】分式方程去分母得:x−1=m+2x−4,由题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故答案为:1.【题目点拨】此题考查分式方程的增根,解题关键在于掌握分式方程中增根的意义.15、a【解题分析】

找出正方形面积等于正方形内所有三角形面积的和求这个等量关系,列出方程求解,求得DF,根据AF=a-DF即可求得AF.【题目详解】作FH⊥CE,连接EF,

∵∠FHC=∠D=90°,∠HCF=∠DCF,CF=CF

∴△CHF≌△CDF,

又∵S正方形ABCD=S△CBE+S△CDF+S△AEF+S△CEF,

设DF=x,则a2=CE•FH

∵FH=DF,CE=,

∴整理上式得:2a-x=x,

计算得:x=a.

AF=a-x=a.

故答案为a.【题目点拨】本题考查了转换思想,考查了全等三角形的证明,求AF,转化为求DF是解题的关键.16、1【解题分析】

方程两边都乘以最简公分母(x–1),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出a的值.【题目详解】解:方程两边都乘(x﹣1),得1-ax+3x=3x﹣3,∵原方程有增根∴最简公分母x﹣1=0,即增根为x=1,把x=1代入整式方程,得a=1.【题目点拨】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.方程的增根不适合原方程,但适合去分母后的整式方程,这是求字母系数的重要思想方法.17、5或1.【解题分析】

先证明四边形BDFC是平行四边形;当△BCD是等腰三角形求面积时,需分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=5,然后求出DG=3,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾.【题目详解】证明:∵∠A=∠ABC=90°,

∴BC∥AD,

∴∠CBE=∠DFE,

在△BEC与△FED中,∴△BEC≌△FED,

∴BE=FE,

又∵E是边CD的中点,

∴CE=DE,

∴四边形BDFC是平行四边形;(1)BC=BD=5时,由勾股定理得,AB===,

所以,四边形BDFC的面积=5×=5;

(2)BC=CD=5时,过点C作CG⊥AF于G,则四边形AGCB是矩形,

所以,AG=BC=5,

所以,DG=AG-AD=5-2=3,由勾股定理得,CG===4,

所以,四边形BDFC的面积=4×5=1;

(3)BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾,此时不成立;

综上所述,四边形BDFC的面积是5或1.故答案为:5或1.【题目点拨】本题考查平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.18、∠A=90°,AD=AF(答案不唯一)【解题分析】试题解析:要证明四边形ADEF为正方形,则要求其四边相等,AB=AC,点D、E、F分别是△ABC的边AB、BC、AC的中点,则得其为平行四边形,且有一角为直角,则在平行四边形的基础上得到正方形.故答案为△ABC为等腰直角三角形,且AB=AC,∠A=90°(此题答案不唯一).三、解答题(共66分)19、(1),;(2),.【解题分析】

(1)先移项,然后根据两边同时开方进行计算;(2)用十字相乘直接计算即可;【题目详解】解:(1),,即或,,;(2),或,,.【题目点拨】本题主要考查一元二次方程的求解,熟练掌握十字相乘和直接开方法是解决本题的关键.20、(1)(m﹣1)(a﹣b);(1)(m+1)1(m﹣1)1.【解题分析】

(1)直接提取公因式(m+1),进而得穿答案:(1)利用平方差公式进行因式分解【题目详解】解:(1)a(m﹣1)+b(1﹣m)=(m﹣1)(a﹣b);(1)原式=(m1+4+4m)(m1+4﹣4m)=(m+1)1(m﹣1)1.【题目点拨】本题考查提公因式与公式法的综合运用,解题关键在于掌握运算法则21、(1)v=;(2)平均每小时至少要卸货20吨.【解题分析】

(1)直接利用vt=100进而得出答案;

(2)直接利用要求不超过5小时卸完船上的这批货物,进而得出答案.【题目详解】(1)由题意可得:100=vt,则;(2)∵不超过5小时卸完船上的这批货物,∴t≤5,则v≥=20,答:平均每小时至少要卸货20吨.【题目点拨】考查了反比例函数的应用,正确得出函数关系式是解题关键.22、(1)x(1﹣y)(1+y)(1)﹣6(x﹣1)1【解题分析】

(1)直接提取公因式x,进而利用平方差公式分解因式即可;(1)直接提取公因式﹣6,进而利用完全平方公式分解因式即可.【题目详解】(1)x﹣xy1=x(1﹣y1)=x(1﹣y)(1+y);(1)﹣6x1+11x﹣6=﹣6(x1﹣1x+1)=﹣6(x﹣1)1.【题目点拨】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.23、(1)购进型台灯盏,型台灯25盏;(2)当商场购进型台灯盏时,商场获利最大,此时获利为元.【解题分析】试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.考点:1.一元一次方程的应用;2.一次函数的应用.24、(1)2(2)见解析(3)当t=152【解题分析】

(1)根据菱形的对角线互相垂直平分的性质得到直角△AOD,在该直角三角形中利用勾股定理来求线段DO的长度;(2)需要分类讨论:点P在线段OA上、点Q在线段OD上;点P在线段OC上,点Q在线段OD上;点P在线段OC上,点Q在线段OB上;(3)由6<t≤2时OP=1﹣2t、OQ=2﹣t可得△POQ的面积S=12(2﹣t)(1﹣2t)=﹣t2+15t﹣54=﹣(t﹣152)2+【题目详解】(1)∵四边形ABCD是菱形,∴AC⊥BD.在Rt△AOD中,AD=15,AO=1由勾股定理得:OD=AD2-A(2)①当0≤t≤6时,OP=1﹣2t,OQ=2﹣t,则OP+OQ=1﹣2t+2﹣t=﹣3t+21即:y=﹣3t+21;②当6<t≤2时,OP=2t﹣1,OQ=2﹣t,则OP+OQ=2t﹣1+2﹣t=t﹣3即:y=t﹣3;③当2<t≤1时,OP=2t﹣1,OQ=t﹣2,则O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论