




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省丰宁满族自治县数学八年级第二学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,直线与y轴交于点B(0,4),与x轴交于点A,∠BAO=30°,将△AOB沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为()A.﹣8 B.﹣16 C.﹣8 D.﹣122.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A.5 B.6 C.8 D.103.学校国旗护卫队成员的身高分布加下表:身高/cm159160161162人数71099则学校国旗护卫队成员的身高的众数和中位数分别是()A.160和160 B.160和160.5 C.160和161 D.161和1614.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是().A. B.C. D.5.如果关于的方程有解,那么实数的取值范围是()A. B. C. D.6.下列多边形中,不能够单独铺满地面的是()A.正三角形 B.正方形 C.正五边形 D.正六边形7.如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在()A.三条边的垂直平分线的交点 B.三个角的角平分线的交点C.三角形三条高的交点 D.三角形三条中线的交点8.一元二次方程2x(x+1)=(x+1)的根是()A.x=0 B.x=1C. D.9.如图,矩形的对角线,交于点,,,则的长为A. B. C. D.10.若菱形的周长为24cm,一个内角为60°,则菱形的面积为()A.4cm2 B.9cm2 C.18cm2 D.36cm211.在同一坐标系中,函数y=kx与y=3x﹣k的图象大致是()A. B. C. D.12.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(每题4分,共24分)13.一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚,若梯子的顶端下滑,则梯足将滑动______.14.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AD,AD=6,AB=10,则△AOB的面积为_________________15.▱ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是_____cm.16.已知a2-2ab+b2=6,则a-b=_________.17.一个矩形的长比宽多1cm,面积是,则矩形的长为___________18.如图所示,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若△ABC的周长为10cm,则△OEC的周长为_____.三、解答题(共78分)19.(8分)已知:如图,在△ABC中,∠A=120°,AB=4,AC=2.求BC边的长.20.(8分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,则DE=.②如图4,在△ABC中,∠BAC=45°,AD⊥BC,且BD=2,AD=6,求△ABC的面积.21.(8分)如图,在平面直角坐标系中,OA=OB=8,OD=1,点C为线段AB的中点(1)直接写出点C的坐标;(2)求直线CD的解析式;(3)在平面内是否存在点F,使得以A、C、D、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.22.(10分)如图,在□ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形(2)若CF=6,BF=8,DF=10,求证:AF是∠DAB的平分线.23.(10分)随着车辆的增加,交通违规的现象越来越严重,交警对人民路某雷达测速区检测到的一组汽车的时速数据进行整理(速度在30﹣40含起点值30,不含终点值40),得到其频数及频率如表:数据段频数频率30﹣40100.0540﹣5036c50﹣60a0.3960﹣70bd70﹣80200.10总计2001(1)表中a、b、c、d分别为:a=;b=;c=;d=(2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?24.(10分)解不等式组,并在数轴上把解集表示出来.(1)(2)25.(12分)在平面直角坐标系中,点坐标为,以原点为顶点的四边形是平行四边形,将边沿轴翻折得到线段,连结交线段于点.(1)如图1,当点在轴上,且其坐标为.①求所在直线的函数表达式;②求证:点为线段的中点;(2)如图2,当时,,的延长线相交于点,试求的值.(直接写出答案,不必说明理由)26.我市某企业安排名工人生产甲、乙两种产品,每人每天生产件甲产品或件乙产品,根据市场需求和生产经验,甲产品每件可获利元,乙产品每件可获利元,而实际生产中,生产乙产品需要额外支出一定的费用,经过核算,每生产件乙产品,当天平均每件获利减少元,设每天安排人生产乙产品.根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲乙若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?
参考答案一、选择题(每题4分,共48分)1、D【解题分析】
首先过C作CD⊥y轴,垂足为D,再根据勾股定理计算CD的长,进而计算C点的坐标,在代入反比例函数的解析式中,进而计算k的值.【题目详解】解:过点C作CD⊥y轴,垂足为D,由折叠得:OB=BC=4,∠OAB=∠BAC=30°∴∠OBA=∠CBA=60°=∠CBD,在Rt△BCD中,∠BCD=30°,∴BD=BC=2,CD=,∴C(﹣,6)代入得:k=﹣×6=﹣故选:D.【题目点拨】本题主要考查求解反比例函数的解析式,关键在于构造辅助线计算CD的长度.2、A【解题分析】
由等腰三角形的性质证得BD=DC,根据直角三角形斜边上的中线的性质即可求得结论.【题目详解】解:∵AB=AC=10,AD平分∠BAC,
∴AD⊥BC,
∵E为AC的中点,,故选:A.【题目点拨】本题主要考查了等腰三角形的性质,直角三角形斜边上的中线的性质,熟练掌握直角三角形斜边上的中线的性质是解决问题的关键.3、C【解题分析】
众数是一组数据中出现次数最多的数据;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.根据众数和中位数的概念计算可得解.【题目详解】解:数据160cm出现了10次,次数最多,众数是:160cm;
排序后位于中间位置的是161cm,中位数是:161cm.
故选:C.【题目点拨】本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4、D【解题分析】
由图易知两条直线分别经过(1,1)、(0,-1)两点和(0,2)、(1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题.【题目详解】由图知,设经过(1,1)、(0,-1)的直线解析式为y=ax+b(a≠0).将(1,1)、(0,-1)两点坐标代入解析式中,解得故过(1,1)、(0,-1)的直线解析式y=2x-1,对应的二元一次方程为2x-y-1=0.设经过(0,2)、(1,1)的直线解析式为y=kx+h(k≠0).将(0,2)、(1,1)两点代入解析式中,解得故过(0,2)、(1,1)的直线解析式为y=-x+2,对应的二元一次方程为x+y-2=0.因此两个函数所对应的二元一次方程组是故选D【题目点拨】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式.5、D【解题分析】
根据方程有解确定出a的范围即可.【题目详解】∵关于x的方程(a-3)x=2019有解,∴a-3≠0,即a≠3,故选:D.【题目点拨】此题考查了一元一次方程的解,弄清方程有解的条件是解本题的关键.6、C【解题分析】
由镶嵌的条件知,在一个顶点处各个内角和为360°.【题目详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.【题目点拨】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.7、A【解题分析】
根据题意,知猎狗应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【题目详解】解:猎狗到△ABC三个顶点的距离相等,则猎狗应蹲守在△ABC的三条(边垂直平分线)的交点.
故选:A.【题目点拨】此题考查了线段垂直平分线的性质,以及三角形的角平分线、中线和高,熟练掌握性质是解本题的关键.8、D【解题分析】
移项,提公因式法分解因式,即可求得方程的根.【题目详解】解:2x(x+1)=(x+1),
2x(x+1)-(x+1)=0,
(2x-1)(x+1)=0,
则方程的解是:x1=,x2=-1.
故选:D.【题目点拨】本题考查一元二次方程的解法-因式分解法,根据方程的特点灵活选用合适的方法是解题的关键.9、C【解题分析】
利用矩形对角线的性质得到OA=OB.结合∠AOD=120°知道∠AOB=60°,则△AOB是等边三角形;最后在直角△ABC中,利用勾股定理来求BC的长度即可.【题目详解】解:如图,矩形的对角线,交于点,,.又,,是等边三角形,.在直角中,,,,.故选:.【题目点拨】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.10、C【解题分析】
由菱形的性质和已知条件得出AB=BC=CD=DA=6cm,AC⊥BD,由含30°角的直角三角形的性质得出BO=AB=3cm,由勾股定理求出OA,可得BD,AC的长度,由菱形的面积公式可求解.【题目详解】如图所示:∵四边形ABCD是菱形∴AB=BC=CD=DA,∠BAO=∠BAD=30°,AC⊥BD,OA=AC,BO=DO∵菱形的周长为14cm∴AB=BC=CD=DA=6cm∴BO=AB=3cm∴OA==3(cm)∴AC=1OA=6cm,BD=1BO=6cm∴菱形ABCD的面积=AC×BD=18cm1.故选:C.【题目点拨】本题考查了菱形的性质、含30°角的直角三角形的性质、勾股定理;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.11、B【解题分析】分析:根据图象分别确定k的取值范围,若有公共部分,则有可能;否则不可能.详解:根据图象知:第二个函数一次项系数为正数,故图象必过一、三象限,而y=kx必过一三或二四象限,A.
k<0,−k<0.解集没有公共部分,所以不可能,故此选项错误;B.
k<0,−k>0.解集有公共部分,所以有可能,故此选项正确;C..解集没有公共部分,所以不可能,故此选项错误;D.正比例函数的图象不对,所以不可能,故此选项错误.故选B.点睛:此题主要考查了一次函数图象,一次函数的图象有四种情况:
①当时,函数的图象经过第一、二、三象限;
②当时,函数的图象经过第一、三、四象限;
③当时,函数的图象经过第一、二、四象限;
④当时,函数的图象经过第二、三、四象限.12、D【解题分析】
根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【题目详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,故选D.【题目点拨】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.二、填空题(每题4分,共24分)13、【解题分析】
根据条件作出示意图,根据勾股定理求解即可.【题目详解】解:由题意可画图如下:在直角三角形ABO中,根据勾股定理可得,,如果梯子的顶度端下滑1米,则.在直角三角形中,根据勾股定理得到:,则梯子滑动的距离就是.故答案为:1m.【题目点拨】本题考查的知识点是勾股定理的应用,根据题目画出示意图是解此题的关键.14、12【解题分析】∵BD⊥AD,AD=6,AB=10,,∴.∵四边形ABCD是平行四边形,15、1.【解题分析】
首先根据平行四边形基本性质,AE⊥BD,∠EAD=60°,可得∠ADE=30°,然后再根据直角三角形的性质可得AD=2AE=4cm,再根据四边形ABCD是平行四边形可得AO=CO,BO=DO,BC=AD=4cm,进而求出BO+CO的长,然后可得△OBC的周长.【题目详解】∵AE⊥BD,∠EAD=60°,∴∠ADE=30°,∴AD=2AE=4cm,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,BC=AD=4cm,∵AC+BD=14cm,∴BO+CO=7cm,∴△OBC的周长为:7+4=1(cm),故答案为1【题目点拨】本题考查平行四边形的基本性质,解题关键在于根据直角三角形的性质得出AD=2AE=4cm16、【解题分析】由题意得(a-b)2="6,"则=17、1【解题分析】
设宽为xcm,根据矩形的面积=长×宽列出方程解答即可.【题目详解】解:设宽为xcm,依题意得:
x(x+1)=132,
整理,得
(x+1)(x-11)=0,
解得x1=-1(舍去),x2=11,
则x+1=1.
答:矩形的长是1cm.【题目点拨】本题考查了根据实际问题列出一元二次方程的知识,列一元二次方程的关键是找到实际问题中的相等关系.18、5cm【解题分析】先由平行四边形的性质可知,O是AC的中点,由已知E是BC的中点,可得出OE是△ABC的中位线,再通过△ABC的周长即可求出△OEC的周长.解:在平行四边形ABCD中,有∵点E是BC的中点∴∴∴△OEC的周长△ABC的周长=5cm故答案为:5cm三、解答题(共78分)19、.【解题分析】
过点C作CD⊥BA,垂足为D.根据平角的定义可得∠DAC=60°,在Rt△ACD中,根据三角函数可求AD,BD的长;在Rt△BCD中,根据勾股定理可求BC的长.【题目详解】解:过点作,垂足为∵∴在Rt中∴在Rt中【题目点拨】本题考查解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.同时考查了勾股定理.20、(1)见解析;(2)见解析;(4)①DE=4;②△ABC的面积是1.【解题分析】
(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,BF=2-2=4,设GC=x,则CD=GC=x,FC=2-x,BC=2+x.在直角△BCF中利用勾股定理求得CD的长,则三角形的面积即可求解.【题目详解】(1)证明:如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)证明:如图2,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.AE=AB﹣BE=12﹣4=8,设DF=x,则AD=12﹣x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,则82+(12﹣x)2=(4+x)2,解得:x=2.则DE=4+2=4.故答案是:4;②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,则四边形AEFG是正方形,且边长=AD=2,BE=BD=2,则BF=2﹣2=4,设GC=x,则CD=GC=x,FC=2﹣x,BC=2+x.在直角△BCF中,BC2=BF2+FC2,则(2+x)2=42+x2,解得:x=4.则BC=2+4=5,则△ABC的面积是:AD•BC=×2×5=1.【题目点拨】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.21、(1)点C的坐标为(4,4);(2)直线CD的解析式是y=;(3)点F的坐标是(11,4),(5,-4)或(-3,4).【解题分析】
(1)由OA,OB的长度可得出点A,B的坐标,结合点C为线段AB的中点可得出点C的坐标;
(2)由OD的长度可得出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线CD的解析式;
(3)设点F的坐标为(m,n),分AC为对角线、AD为对角线及CD为对角线三种情况,利用平行四边形的对角线互相平分可得出关于m,n的二元一次方程组,解之即可得出点F的坐标.【题目详解】(1)∵OA=OB=8,点A在x轴正半轴,点B在y轴正半轴,∴点A的坐标为(8,0),点B的坐标为(0,8).又∵点C为线段AB的中点,∴点C的坐标为(4,4).(2)∵OD=1,点D在x轴的正半轴,∴点D的坐标为(1,0).设直线CD的解析式为y=kx+b(k≠0),将C(4,4),D(1,0)代入y=kx+b,得:,解得:,∴直线CD的解析式是y=.(3)存在点F,使以A、C、D、F为点的四边形为平行四边形,设点F的坐标为(m,n).分三种情况考虑,如图所示:①当AC为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F1的坐标为(11,4);②当AD为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F2的坐标为(5,-4);③当CD为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F3的坐标为(-3,4).综上所述,点F的坐标是(11,4),(5,-4)或(-3,4).【题目点拨】本题考查了中点坐标公式、待定系数法求一次函数解析式、平行四边形的性质以及解二元一次方程组,解题的关键是:(1)由点A,B的坐标,利用中点坐标公式求出点C的坐标;(2)根据点的坐标,利用待定系数法求出直线CD的解析式;(3)分AC为对角线、AD为对角线及CD为对角线三种情况,利用平行四边形的对角线互相平分找关于m,n的二元一次方程组.22、见解析【解题分析】分析:(1)由平行四边形的性质和已知条件得出BE=DF,证明四边形BFDE为平行四边形,再由DE⊥AB,即可得出结论;(2)由矩形的性质和勾股定理求出BC,得出AD=BC=DF,证出∠DAF=∠DFA,再由平行线的性质即可得出结论.详解:证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵CF=AE,∴BE=DF.∴四边形BFDE为平行四边形.∵DE⊥AB,∴∠DEB=90°.∴四边形BFDE是矩形.(2)∵四边形BFDE是矩形,∴∠BFD=90°.∴∠BFC=90°.在Rt△BFC中,由勾股定理得BC==10.∴AD=BC=10.又∵DF=10,∴AD=DF.∴∠DAF=∠DFA.∵AB∥CD,∴∠DFA=∠FAB.∴∠DAF=∠FAB.∴AF是∠DAB的平分线.点睛:本题考查了平行四边形的性质、矩形的判定与性质、勾股定理、等腰三角形的判定;熟练掌握平行四边形的性质,证明四边形BFDE是矩形是解决问题的关键.23、(1)78;1;0.18;0.28;(2)见解析;(3)违章车辆共有76(辆).【解题分析】
(1)根据第一组的频数是10,对应的频率是0.05即可求得整理的车辆总数,然后根据百分比的意义求解;(2)根据(1)的结果即可补全直方图;(3)求得最后两组的和即可.【题目详解】(1)整理的车辆总数是:10÷0.05=200(辆),则a=200×0.39=78,c0.18;d=1﹣0.18﹣0.39﹣0.10=0.28,b=200×0.28=1.故答案为:78;1;0.18;0.28;(2)如图:;(3)违章车辆共有1+20=76(辆).【题目点拨】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24、(1),数轴见解析;(2),数轴见解析【解题分析】
(1)分别解两个不等式,找出两个解集的公共部分,即为不等式组的解集,再将不等式组的解集在数轴上表示出来即可,(2)分别解两个不等式,找出两个解集的公共部分,即为不等式组的解集,再将不等式组的解集在数轴上表示出来即可.【题目详解】解:(1)解不等式2x-6<3x得:x>-6,解不等式得:x≤13,∴不等式组的解集为:,不等式组的解集在数轴上表示如下:(2)解不等式,解得:x,解不等式5x-1<3(x+1),解得:x<2,即不等式组的解集为:,不等组的解集在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店改造项目外包合同模板
- 超市基础改造合同模板
- 高端月子中心装修材料合同
- 高效促成业务合作居间合同
- Practical English Ⅰ学习通超星期末考试答案章节答案2024年
- 2024年海口客运从业资格证考试模拟题及答案
- 2024年钦州客运资格证考试题目
- 文化活动中心设施使用与管理规范
- 建筑企业施工现场管理手册
- 2024年呼和浩特客运从业资格证考试题库答案解析
- 2024年医院医疗质量管理与考核细则范文(三篇)
- 《国家的儿子》教案 2023-2024学年高教版(2023)中职语文基础模块上册
- 【新生代】2024H1休闲零食品牌健康追踪分析
- 2024年产品代理合同范本(二篇)
- 2024年秋新沪教牛津版英语三年级上册 Unit 4 第3课时 教学课件
- 2024-2030年中国左旋肉碱咖啡市场消费前景与未来投资效益盈利性报告
- 《2024年 神华Z集团公司内部控制有效性评价》范文
- 城市地下管网建设实施保障措施与政策建议
- 2024年新人教版七年级上册数学教学课件 第四章 整式的加减 数学活动
- 2024北京海淀区高三二模历史试题及答案
- 职业技术学院《老年服务与管理概论》课程标准
评论
0/150
提交评论