山东省青岛市市北区2024届数学八下期末教学质量检测试题含解析_第1页
山东省青岛市市北区2024届数学八下期末教学质量检测试题含解析_第2页
山东省青岛市市北区2024届数学八下期末教学质量检测试题含解析_第3页
山东省青岛市市北区2024届数学八下期末教学质量检测试题含解析_第4页
山东省青岛市市北区2024届数学八下期末教学质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛市市北区2024届数学八下期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.px2-3x+p2A.p=1 B.p>0 C.p≠0 D.p为任意实数2.反比例函数的图象的一支在第二象限,则的取值范围是()A. B. C. D.3.如果点P(m,1-2m)在第四象限,那么A.0<m<12 B.-124.电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到电视节目的区域就越广.电视塔高(单位:)与电视节目信号的传播半径(单位:)之间存在近似关系,其中是地球半径.如果两个电视塔的高分别是,,那么它们的传播半径之比是,则式子化简为()A. B. C. D.5.甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:选手

方差(环2)

0.035

0.016

0.022

0.025

则这四个人种成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁6.已知二次根式的值为3,那么的值是()A.3 B.9 C.-3 D.3或-37.以下列各组数为边长,能构成直角三角形的是()A.1,2,3 B.4,5,6 C.,, D.32,42,528.在下列说法中:①有一个外角是120°的等腰三角形是等边三角形.②有两个外角相等的等腰三角形是等边三角形.③有一边上的高也是这边上的中线的等腰三角形是等边三角形.④三个外角都相等的三角形是等边三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个9.若方程

+=

3有增根,则a的值为(

)A.1 B.2 C.3 D.010.如图,过正方形的顶点作直线,点、到直线的距离分别为和,则的长为()A. B. C. D.11.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是(

)A.3 B. C.5 D.12.已知关于的一元二次方程有一个根是,那么的值是()A. B. C. D.二、填空题(每题4分,共24分)13.一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是______.14.平行四边形的一个内角平分线将对边分成3和5两个部分,则该平行四边形的周长是_____.15.某果农2014年的年收入为5万元,由于党的惠农政策的落实,2016年年收入增加到7.2万元,若平均每年的增长率是x,则x=_____.16.如图,边长为的菱形中,,连接对角线,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…按此规律所作的第2019个菱形的边长为______.17.以正方形ABCD一边AB为边作等边三角形ABE,则∠CED=_____.18.如图,在平面直角坐标系中,正方形OA1B1C1,B1A2B2C2,B2A3B3C3,···的顶点B1,B2,B3,···在x轴上,顶点C1,C2,C3···在直线y=kx+b上,若正方形OA1B1C1,B1A2B2C2的对角线OB1=2,B1B2=3,则点C5的纵坐标是_____.三、解答题(共78分)19.(8分)如图,在矩形ABCD中,AC=60cm,∠BAC=60°,点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,同时点F从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点E,F运动的时间是t秒(0<t≤15).过点F作OF⊥BC于点O,连接OE,EF.(1)求证:AE=OF;(2)四边形AEOF能够成为菱形吗?如果能,求出相应的t值,如果不能,请说明理由;(3)当t为何值时,△OEF为直角三角形?请说明理由.20.(8分)(1)解不等式组:(2)解方程:.21.(8分)某学校八年级开展英语拼写大赛,一班和二班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示:(1)根据图示填写下表班级中位数(分)众数(分)平均数(分)一班85二班10085(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?(3)已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?22.(10分)如图,△ABC的三个顶点在正方形网格的格点上,网格中的每个小正方形的边长均为单位1.(1)求证:△ABC为直角三角形;(2)求点B到AC的距离.23.(10分)因式分解:(1)36﹣x2(2)ma2﹣2ma+m24.(10分)如图所示,△A′B′C′是△ABC经过平移得到的,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请写出三角形ABC平移的过程;(2)分别写出点A′,B′,C′的坐标.(3)求△A′B′C′的面积.25.(12分)为了庆祝新中国成立70周年,某校组织八年级全体学生参加“恰同学少年,忆峥嵘岁月”新中国成立70周年知识竞赛活动.将随机抽取的部分学生成绩进行整理后分成5组,50~60分()的小组称为“学童”组,60~70分()的小组称为“秀才”组,70~80分()的小组称为“举人”组,80~90分()的小组称为“进士”组,90~100分()的小组称为“翰林”组,并绘制了不完整的频数分布直方图如下,请结合提供的信息解答下列问题:(1)若“翰林”组成绩的频率是12.5%,请补全频数分布直方图;(2)在此次比赛中,抽取学生的成绩的中位数在组;(3)学校决定对成绩在70~100分()的学生进行奖励,若八年级共有336名学生,请通过计算说明,大约有多少名学生获奖?26.如图,在△ABC中,AE是∠BAC的角平分线,交BC于点E,DE∥AB交AC于点D.(1)求证AD=ED;(2)若AC=AB,DE=3,求AC的长.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

一元二次方程的二次项系数不为1.【题目详解】∵方程px2-3x+∴二次项系数p≠1,故选C.【题目点拨】此题考查一元二次方程的定义,解题关键在于掌握其定义.2、A【解题分析】分析:当比例系数小于零时,反比例函数的图像经过二、四象限,由此得到k-1<0,解这个方程求出k的取值范围.详解:由题意得,k-1<0,解之得k<1.故选A.点睛:本题考查了反比例函数的图像,对于反比例函数,当k>0,反比例函数图象的两个分支在第一、三象限;当k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内.3、D【解题分析】

横坐标为正,纵坐标为负,在第四象限.【题目详解】解:∵点p(m,1-2m)在第四象限,∴m>0,1-2m<0,解得:m>12,故选D【题目点拨】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.4、D【解题分析】

乘以分母的有理化因式即可完成化简.【题目详解】解:.故选D.【题目点拨】本题考查了二次根式的应用,了解二次根式的有理化因式是解答本题的关键,难度不大.5、B【解题分析】

方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.【题目详解】解:∵S甲2,=0.035,S乙2=0.016,S,丙2=0.022,S,丁2=0.025,∴S乙2最小.∴这四个人种成绩发挥最稳定的是乙.故选B.6、D【解题分析】试题分析:∵,∴.故选D.考点:二次根式的性质.7、C【解题分析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【题目详解】解:A、∵12+22≠32,∴该三角形不是直角三角形,故此选项不符合题意;B、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;C、∵∴该三角形是直角三角形,故此选项符合题意;D、∵(32)2+(42)2≠(52)2,∴该三角形不是直角三角形,故此选项不符合题意.故选C.【题目点拨】考查勾股定理的逆定理,:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形.8、B【解题分析】

根据有一个角等于60°的等腰三角形是等边三角形,三个角相等的三角形是等边三角形进行分析即可.【题目详解】解:①有一个外角是120°的等腰三角形是等边三角形,说法正确;②有两个外角相等的等腰三角形是等边三角形,说法错误;③有一边上的高也是这边上的中线的三角形是等边三角形,说法错误;④三个外角都相等的三角形是等边三角形,说法正确,正确的命题有2个,故选:B.【题目点拨】此题主要考查了命题与定理,关键是掌握等边三角形的判定方法.9、A【解题分析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出a的值.【题目详解】方程两边都乘(x-2),得

x-1-a=3(x-2)

∵原方程增根为x=2,

∴把x=2代入整式方程,得a=1,

故选:A.【题目点拨】考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.10、A【解题分析】

先证明△ABE≌△BCF,得到BE=CF=1,在Rt△ABE中利用勾股定理可得AB=2,由此可得AC长.【题目详解】解:∵四边形ABCD是正方形,

∴AB=AC,∠ABC=90°.

∵∠ABE+∠EAB=90°,∠ABE+∠CBF=90°,

∴∠EAB=∠CBF.

又∠AEB=∠CFB=90°,

∴△ABE≌BCF(AAS).

∴BE=CF=1.

在Rt△ABE中,利用勾股定理可得AB===2.

则AC=AB=2.

故选A.【题目点拨】本题主要考查了正方形的性质、全等三角形的判定和性质,以及勾股定理,解题的关键是通过全等转化线段使其划归于一直角三角形中,再利用勾股定理进行求解.11、C【解题分析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=11,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=11,即3x+12y=11,x+4y=1,所以S2=x+4y=1,故答案为1.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S1,S2,S3,再利用S1+S2+S3=11求解是解决问题的关键.12、C【解题分析】

根据一元二次方程的解的定义,将x=-1代入关于x的一元二次方程x1+3x+a=0,列出关于a的一元一次方程,通过解方程即可求得a的值.【题目详解】根据题意知,x=-1是关于x的一元二次方程x1+3x+a=0的根,

∴(-1)1+3×(-1)+a=0,即-1+a=0,

解得,a=1.

故选:C.【题目点拨】本题考查了一元二次方程的解的定义.一元二次方程的解使方程的左右两边相等.二、填空题(每题4分,共24分)13、1【解题分析】

利用因式分解法求出x的值,再根据等腰三角形的性质分情况讨论求解.【题目详解】解:x2-5x+4=0,

(x-1)(x-4)=0,

所以x1=1,x2=4,

当1是腰时,三角形的三边分别为1、1、4,不能组成三角形;

当4是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=1.

故答案是:1.【题目点拨】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论求解.14、22或1.【解题分析】

根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.【题目详解】∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当BE=3时,CE=5,AB=3,则周长为22;②当BE=5时,CE=3,AB=5,则周长为1,故答案为:22或1.【题目点拨】本题考查了平行四边形的性质,结合了等腰三角形的判定.注意有两种情况,要进行分类讨论.15、20%.【解题分析】

本题的等量关系是2014年的收入×(1+增长率)2=2016年的收入,据此列出方程,再求解.【题目详解】解:根据题意,得,即.解得:,(不合题意,舍去)故答案为20%.【题目点拨】本题考查了一元二次方程应用中求平均变化率的知识.解这类题的一般思路和方法是:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的一元二次方程方程为a(1±x)2=b.16、【解题分析】

根据已知和菱形的性质可分别求得AC,AC1,AC2的长,从而可发现规律根据规律不难求得第2019个菱形的边长.【题目详解】连接DB交AC于M点,

∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=2AM=,同理可得AC1=AC=()2,AC2=AC1=3=()3,按此规律所作的第n个菱形的边长为()n-1,当n=2019时,第2019个菱形的边长为()2018,故答案为.【题目点拨】本题考查了菱形的性质、含30°角的直角三角形的运用;根据第一个和第二个菱形的边长得出规律是解决问题的关键.17、30°或150°.【解题分析】

等边△ABE的顶点E可能在正方形外部,也可能在正方形内部,因此分两种情况画出图形进行求解即可.【题目详解】分两种情况:①当点E在正方形ABCD外侧时,如图1所示:∵四边形ABCD是正方形,△ABE是等边三角形∴∠ABC=90°,BC=BE=AB,∠ABE=∠AEB=60°,∴∠CBE=∠CBA+∠ABE=90°+60°=150°,∵BC=BE,∴∠BCE═∠BEC=15°,同理可得∠EDA═∠DEA=15°,∴∠CED=∠AEB﹣∠CEB﹣∠DEA=60°﹣15°﹣15°=30°;②当点E在正方形ABCD内侧时,如图2所示:∵∠EAB=∠AEB=60°,∠BAC=90°,∴∠CAE=30°,∵AC=AE,∴∠ACE=∠AEC=75°,同理∠DEB=∠EDB=75°,∴∠CED=360°﹣60°﹣75°﹣75°=150°;综上所述:∠CED为30°或150°;故答案为:30°或150°.【题目点拨】本题考查了正方形的性质及等边三角形的性质,正确地进行分类,熟练掌握相关的性质是解题的关键.18、(,)【解题分析】

利用正方形性质,求得C1、C2坐标,利用待定系数法求得函数关系式,再求C3坐标,根据C1、C2、C3坐标找出纵坐标规律,求得C5纵坐标,代入关系式,求得C5坐标即可.【题目详解】如图:根据正方形性质可知:OB1=2,B1B2=3C1坐标为(1,1),C2坐标为(,)将C1、C2坐标代入y=kx+b解得:所以该直线函数关系式为设,则坐标为(1+2+a,a)代入函数关系式为,得:,解得:则C3(,)则C1(1,1),C2(,),C3(,)找出规律:C4纵坐标为,C5纵坐标为将C5纵坐标代入关系式,即可得:C5(,)【题目点拨】本题为图形规律与一次函数综合题,难度较大,熟练掌握正方形性质以及一次函数待定系数法为解题关键.三、解答题(共78分)19、(1)证明见解析;(2)能,10;(3)t=或t=12,理由见解析.【解题分析】

(1)利用矩形的性质和直角三角形中所对应的直角边是斜边的一半进行作答;(2)证明平行四边形是菱形,分情况进行讨论,得到等式;(3)分别讨论若四边形AEOF是平行四边形时,则①∠OFE=90˚或②∠OEF=90˚,分情况讨论列等式.【题目详解】解:(1)∵四边形ABCD是矩形∴∠B=90˚在Rt△ABC中,∠ACB=90˚-∠BAC=30˚∵AE=2tCF=4t又∵Rt△COF中,∠ACB=30˚∴OF=CF=2t∴AE=OF(2)∵OF∥AB,AE=OF∴四边形AEOF是平行四边形当AE=AF时,平行四边形AEOF是菱形即:2t=60-4t解得:t=10∴当t=10时,平行四边形AEOF是菱形(3)①当∠OFE=90˚时,则有:EF∥BC∴∠AFE=∠ACB=30˚,∠AEF=∠B=90˚在Rt△AEF中,∠AFE=30˚∴AF=2AE即:60-4t=22t解得:t=②当∠OEF=90˚时,四边形AEOF是平行四边形则有:OE∥AC∴∠AFE=∠OEF=90˚在Rt△AEF中,∠BAC=60˚,∠AEF=30˚∴AE=2AF即:2t=2(60-4t)解得:t=12∴当t=或t=12时,△OEF为直角三角形.【题目点拨】本题主要考查矩形的性质、平行四边形的证明应用、菱形的证明、直角三角形中角的综合运用,根据题目中不同的信息列出不同的等式进行解答.20、(1);(2)无解.【解题分析】

(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【题目详解】(1)由①得:,由②得:,则不等式组的解集为;(2)去分母得:,解得:,经检验是增根,分式方程无解.【题目点拨】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.21、(1)85、8580(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)(3)一班成绩较为稳定.【解题分析】

(1)观察图分别写出一班和二班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;

(2)在平均数相同的情况下,中位数高的成绩较好;

(3)根据方差公式计算即可:S2=(可简单记忆为“等于差方的平均数”)【题目详解】解:(1)由条形统计图可知一班5名选手的复赛成绩为:75、80、85、85、100,

二班5名选手的复赛成绩为:70、100、100、75、80,一班的众数为85,一班的平均数为(75+80+85+85+100)÷5=85,二班的中位数是80;班级中位数(分)众数(分)平均数(分)一班858585二班8010085故填:85、8580(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)

(3)S二班2=因为S一班2=70则S一班2<S二班2,因此一班成绩较为稳定.【题目点拨】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.22、(1)见解析;(2).【解题分析】

(1)根据勾股定理以及逆定理解答即可;

(2)根据三角形的面积公式解答即可.【题目详解】解:(1)由勾股定理得,AB2+BC2=65=AC2△ABC为直角三角形;(2)作高BD,由得,解得,BD=点B到AC的距离为.【题目点拨】考查勾股定理问题,关键是根据勾股定理以及逆定理解答.23、(1)(6+x)(6﹣x);(1)m(a﹣1)1.【解题分析】

1)原式利用平方差公式分解即可;(1)原式提取m,再利用完全平方公式分解即可.【题目详解】(1)原式=(6+x)(6﹣x);(1)原式=m(a1﹣1a+1)=m(a﹣1)1.【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24、(1)见解析;(2)A′(2,3)B′(1,0)C′(5,1);(3)5.5【解题分析】

(1)由x1+6-x1=6,y1+4-y1=4得平移规律;(2)根据(1)中的平移规律即可得到点A′,B′,C′的坐标;(3)把△A′B′C′补形为一个长方形后,利用面积的和差关系求△A′B′C′的面积.【题目详解】(1)△ABC先向右平移6个单位,再向上平移4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论