版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省鹤壁市数学八年级第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等2.下列各点中在函数y=2x+2的图象上的是()A.(1,-2) B.(-1,-1) C.(0,2) D.(2,0)3.下列四个三角形,与左图中的三角形相似的是()A. B. C. D.4.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤﹣1 D.k≤1且k≠05.从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程=k﹣2有解,且使关于x的一次函数y=(k+)x+2不经过第四象限,那么这6个数中,所有满足条件的k的值之和是()A.﹣1 B.2 C.3 D.46.计算:=()A. B.4 C.2 D.37.函数中,自变量的取值范围是()A. B. C. D.8.若一个多边形的内角和是外角和的5倍,则这个多边形的边数是()A.12 B.10 C.8 D.119.用一长一短的两根木棒,在它们的中心处固定一个小螺钉,做成一个可转动的叉形架,四个顶点用橡皮筋连成一个四边形,转动木条,这个四边形变成菱形时,两根木棒所成角的度数是()A.90° B.60° C.45° D.30°10.如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、BD、CD、AC的中点,则对四边形EFGH表述最确切的是()A.四边形EFGH是矩形 B.四边形EFGH是菱形C.四边形EFGH是正方形 D.四边形EFGH是平行四边形二、填空题(每小题3分,共24分)11.如图,一块矩形的土地被分成4小块,用来种植4种不同的花卉,其中3块面积分别是,,,则第四块土地的面积是____.12.如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=8cm,EF=15cm,则边AD的长是______cm.13.已知边长为4cm的正方形ABCD中,点P,Q同时从点A出发,以相同的速度分别沿A→B→C和A→D→C的路线运动,则当PQcm时,点C到PQ的距离为______.14.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快___s后,四边形ABPQ成为矩形.15.点A(1,3)_____(填“在”、或“不在”)直线y=﹣x+2上.16.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,线段AC的垂直平分线DE交AC于D交BC于E,则△ABE的周长为_____.17.若x1,x2是方程x2+x−1=0的两个根,则x12+x22=____________.18.如图,将矩形纸片折叠,使点与点重合,其中,则的长度为__________.三、解答题(共66分)19.(10分)已知:如图,在中,于点,为上一点,连结交于,且,,求证:.20.(6分)如图,在△ABC中,AB=10,AD平分∠BAC交BC于点D,若AD=8,BD=6,求AC的长.21.(6分)已知一次函数的图象经过点(-2,-7)和(2,5),求该一次函数解析式并求出函数图象与y轴的交点坐标.22.(8分)计算:(1)(+)()+|1﹣|;(2)﹣()2+(π+)0﹣+|﹣2|23.(8分)如图,矩形中,点在边上,将沿折叠,点落在边上的点处,过点作交于点,连接.(1)求证:四边形是菱形;(2)若,求四边形的面积.24.(8分)如图,在中,,点M、N分别在BC所在的直线上,且BM=CN,求证:△AMN是等腰三角形.25.(10分)某公司销售人员15人,销售经理为了制定某种商品的月销售定额,统计了这15人某月的销售量如表所示:每人销售量/件1800510250210150120人数113532(1)这15位营销人员该月销售量的中位数是______,众数是______;(2)假设销售部负责人把每位销售人员的月销售额定为210件,你认为是否合理?如不合理,请你制定一个较为合理的销售定额,并说明理由.26.(10分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=cm;(2)当t为多少时,四边形PQCD成为平行四边形?(3)当t为多少时,四边形PQCD为等腰梯形?(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
根据平行公理即可判断A、根据两直线平行的判定可以判定B、C;根据平行线的性质即可判定D.【题目详解】A.过直线外一点有且只有一条直线与这条直线平行,正确.B.平行于同一直线的两条直线平行,正确;C.直线y=2x−1与直线y=2x+3一定互相平行,正确;D.如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选D.【题目点拨】本题考查的知识点是命题与定理,解题关键是通过举反例证明命题的正确性.2、C【解题分析】
把选项中的点的坐标分别代入函数解析式进行判断即可.【题目详解】A.当x=1时,y=2×1+2=4≠-2,故点(1,-2)不在函数图象上;B.当x=-1时,y=2×(-1)+2=0≠-1,故点(-1,-1)不在函数图象上;C.当x=0时,y=2×0+2=2,故点(0,2)在函数图象上;D.当x=2时,y=2×2+2=6≠0,故点(2,0)不在函数图象上;故选C.【题目点拨】此题考查一次函数图象上点的坐标特征,解题关键在于把坐标代入解析式.3、B【解题分析】
设单位正方形的边长为1,求出各边的长,再根据各选项的边长是否成比例关系即可判断.【题目详解】设单位正方形的边长为1,给出的三角形三边长分别为2,4,2.A、三角形三边分别是2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边,2,,与给出的三角形的各边成比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,,4,与给出的三角形的各边不成正比例,故D选项错误.故选:B.【题目点拨】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.4、A【解题分析】
分两种情况讨论:(1)当时,方程为一元一次方程,必有实数根;(2)当时,方程为一元二次方程,当时,必有实数根.【题目详解】(1)当时,方程为一元一次方程,必有实数根;(2)当时,方程为一元二次方程,当时,必有实数根:,解得,综上所述,.故选:.【题目点拨】本题考查了根的判别式,要注意,先进行分类讨论,当方程是一元一次方程时,总有实数根;当方程为一元二次方程时,根的情况要通过判别式来判定.5、B【解题分析】
首先利用一次函数的性质,求得当k=-1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,再利用分式方程的知识求得当k=-1,3,使得关于x的分式方程=k-2有解,然后再把-1和3相加即可.【题目详解】解:∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,解得,k>﹣1.5,∵关于x的分式方程=k﹣2有解,∴当k=﹣1时,分式方程=k﹣2的解是x=,当k=1时,分式方程=k﹣2无解,当k=2时,分式方程=k﹣2无解,当k=3时,分式方程=k﹣2的解是x=1,∴符合要求的k的值为﹣1和3,∵﹣1+3=2,∴所有满足条件的k的值之和是2,故选:B.【题目点拨】一次函数的性质以及分式方程是本题的考点,根据一次函数的性质及分式方程有解时求出k的值是解题的关键.6、D【解题分析】
先利用二次根式的性质化简,再合并同类二次根式得出答案.【题目详解】解:=+2=3.故选:D.【题目点拨】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.7、A【解题分析】
根据二次根式的性质的意义,被开方数大于或等于0,可以求出x的范围.【题目详解】解:由有意义得,解得:故选A【题目点拨】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.8、A【解题分析】
根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【题目详解】设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=1.故选:A.【题目点拨】本题考查了多边形的内角和公式与外角和定理,熟练掌握多边形的内角和公式与外角和定理是解题的关键.9、A【解题分析】
根据菱形的判定方法即可解决问题;【题目详解】解:如图,∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形,故选:A.【题目点拨】本题考查菱形的判定,解题的关键是熟练掌握类型的判定方法,属于中考常考题型.10、B【解题分析】
根据三角形中位线定理得到EH=BC,EH∥BC,得到四边形EFGH是平行四边形,根据菱形的判定定理解答即可.【题目详解】解:∵点E、H分别是AB、AC的中点,∴EH=BC,EH∥BC,同理,EF=AD,EF∥AD,HG=AD,HG∥AD,∴EF=HG,EF∥HD,∴四边形EFGH是平行四边形,∵AD=BC,∴EF=EH,∴平行四边形EFGH是菱形,故选B.【题目点拨】本题考查的是中点四边形的概念和性质、掌握三角形中位线定理、菱形的判定定理是解题的关键.二、填空题(每小题3分,共24分)11、54【解题分析】
由矩形的面积公式可得20m2,30m2的两个矩形的长度比为2:3,即可求第四块土地的面积.【题目详解】解:∵20m2,30m2的两个矩形是等宽的,∴20m2,30m2的两个矩形的长度比为2:3,∴第四块土地的面积==54m2,故答案为:54【题目点拨】本题考查了矩形的性质,熟练运用矩形的面积公式是本题的关键.12、【解题分析】
通过设各线段参数,利用勾股定理和射影定理建立各参数的关系方程,即可解决.【题目详解】解:设AH=e,AE=BE=f,BF=HD=m在Rt△AHE中,e2+f2=82在Rt△EFH中,f2=em在Rt△EFB中,f2+m2=152(e+m)2=e2+m2+2em=189AD=e+m=3故答案为3【题目点拨】本题考查了翻折的性质,利用直角三角形建立方程关系求解.13、或.【解题分析】
如图1,当P在AB上,Q在AD上时,根据题意得到,连接AC,根据正方形的性质得到,,求得,推出是等腰直角三角形,得到,根据等腰直角三角形的性质即可得到结论,如图2,当P在BC上,Q在DC上时,则,同理,.【题目详解】∵点P,Q同时从点A出发,以相同的速度分别沿A→B→C和A→D→C的路线运动,∴如图1,当P在AB上,Q在AD上时,则AQ=AP,连接AC,∵四边形ABCD是正方形,∴∠DAB=90°,AC⊥BD,∴ACAB=4.∵AQ=AP,∴△APQ是等腰直角三角形,∴∠AQP=∠QAM=45°,∴AM⊥AC,∵PQcm,∴AMPQ,∴CM=AC=AM;如图2,当P在BC上,Q在DC上时,则CQ=CP,同理,CM,综上所述:点C到PQ的距离为或,故答案为:或.【题目点拨】本题考查了正方形的性质,等腰直角三角形的性质,正确的作出图形是解题的关键.14、1【解题分析】
设最快x秒,当BP=AQ时,四边形ABPQ成为矩形,设最快x秒,则1x=20﹣2x.解方程可得.【题目详解】设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=1.故答案为1【题目点拨】本题考核知识点:平行四边形性质,矩形判定.解题关键点:熟记平行四边形性质,矩形判定.15、不在.【解题分析】
把A(1,3)代入y=﹣x+2验证即可.【题目详解】当x=1时,y=﹣x+2=1,∴点(1,3)不在直线y=﹣x+2上.故答案为:不在.【题目点拨】本题考查了一次函数图像上点的坐标特征,一次函数图像上点的坐标满足一次函数解析式.16、1【解题分析】
根据勾股定理求出BC,根据线段垂直平分线得出AE=CE,求出△ABE的周长=AB+BC,代入求出即可.【题目详解】解:在△ABC中,∠B=90°,AB=3,AC=5,由勾股定理得:BC=4,∵线段AC的垂直平分线DE,∴AE=EC,∴△ABE的周长为AB+BE+AE=AB+BE+CE=AB+BC=3+4=1,故答案为1.【题目点拨】本题主要考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是本题的关键.17、3【解题分析】
先根据根与系数的关系求出x1+x2和x1•x2的值,再利用完全平方公式对所求代数式变形,然后把x1+x2和x1•x2的值整体代入计算即可.【题目详解】∵x1,x2是方程x2+x−1=0的两个根,
∴x1+x2=−=−=−1,x1•x2===−1,
∴x12+x22=(x1+x2)2−2x1⋅x2=(−1)2−2×(−1)=1+2=3.
故答案是:3.【题目点拨】本题考查根与系数的关系,解题的关键是掌握根与系数的关系.18、5【解题分析】
由折叠的AE=EC,设AE=x,则EB=8-x,利用勾股定理求解即可.【题目详解】由折叠的AE=EC,设AE=x,则EB=8-x∵矩形ABCD∴∠B=90°∴42+(8-x)2=x2∴x=5故AE=5.【题目点拨】本题考查的是折叠,熟练掌握勾股定理是解题的关键.三、解答题(共66分)19、详见解析.【解题分析】
根据HL证明Rt△BDF≌Rt△ADC,进而解答即可.【题目详解】∵AD⊥BC,∴∠BDF=∠ADC=90°.在Rt△BDF和Rt△ADC中,,∴Rt△BDF≌Rt△ADC(HL),∴∠FBD=∠DAC.又∵∠BFD=∠AFE,∴∠AEF=∠BDF=90°,∴BE⊥AC.【题目点拨】本题考查了全等三角形的判定和性质,关键是根据HL证明Rt△BDF≌Rt△ADC.20、AC=1【解题分析】
首先利用勾股定理的逆定理证明△ADB是直角三角形,再证明△ADB≌△ADC即可解决问题.【题目详解】在△ABD中,∵AD2+BD2=82+62=10,AB2=12=10,∴AD2+BD2=AB2,∴∠ADB=90°,∴∠ADB=∠ADC.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ADB和△ADC中,∵,∴△ADB≌△ADC(ASA),∴AC=AB=1.【题目点拨】本题考查了全等三角形的判定和性质、勾股定理的逆定理、等腰三角形的判定和性质等知识,解题的关键是勾股定理的逆定理的正确应用,属于中考常考题型.21、y=3x-1,函数图象与y轴的交点坐标(0,-1).【解题分析】
设一次函数解析式为y=kx+b,把一次函数图象上两个已知点的坐标代入得到,然后解方程组求出k、b即可得到一次函数解析式;计算出一次函数当x=0时所对应的函数值即可这个一次函数的图象与y轴的交点坐标.【题目详解】设该一次函数解析式为把点(-2,-7)和(2,5)代入得:解得当x=0时,y=-1∴交点坐标为(0,-1)【题目点拨】此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于利用待定系数法求解析式.22、(1)(2)【解题分析】
(1)利用平方差公式计算,再算出绝对值的值,即可解答(2)先算出零指数幂,算术平方根,再根据二次根式的混合运算即可【题目详解】解:(1)()()+|1﹣|=3﹣2+﹣1=;(2)﹣()2+(π+)0﹣+|﹣2|=﹣3+1﹣3+2﹣=﹣3.【题目点拨】此题考查二次根式的混合运算,解题关键在于掌握运算法则23、(1)详见解析;(2)【解题分析】
(1)根据题意可得,因此可得,又,则可得四边形是平行四边形,再根据可得四边形是菱形.(2)设,则,再根据勾股定理可得x的值,进而计算出四边形的面积.【题目详解】(1)证明:由题意可得,,∴,∵,∴,∴,∴,∴,∴四边形是平行四边形,又∵∴四边形是菱形;(2)∵矩形中,,∴,∴,∴,设,则,∵,∴,解得,,∴,∴四边形的面积是:.【题目点拨】本题主要考查菱形的判定,关键在于首先证明其是平行四边形,再证明两条临边相等即可.24、详见解析【解题分析】
根据已知条件易证△ABM≌△ACN,由全等三角形的性质可得AM=AN,即可证得△AMN是等腰三角形.【题目详解】证明:∵AB=AC,∴∠ABC=∠ACB,∴∠ABM=∠ACN,在△ABM和△ACN中,∴△ABM≌△ACN,∴AM=AN,即△AMN是等腰三角形.【题目点拨】本题考查了全等三角形的判定与性质及等腰三角形的判定,利用全等三角形的的判定证得△ABM≌△CAN是解决问题的关键.25、(1)210,210;(2)合理,理由见解析【解题分析】
(1)根据中位数和众数的定义求解;(2)先观察出能销售210件的人数为能达到大多数人的水平即合理.【题目详解】解:(1)按大小数序排列这组数据,第7个数为210,则中位数为210;210出现的次数最多,则众数为210;故答案为:210,210;(2)合理;因为销售210件的人数有5人,210是众数也是中位数,能代表大多数人的销售水平,所以售部负责人把每位销售人员的月销售额定为210件是合理的.【题目点拨】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.26、(1)18cm(2)当t=125秒时四边形PQCD为平行四边形(3)当t=245时,四边形PQCD为等腰梯形(4)存在t,t的值为103【解题分析】试题分析:(1)作DE⊥BC于E,则四边形ABED
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电缆生产的卓越之路-工艺优化与质量提升策略
- 人教版三年级语文下册教案
- 电子商务公司财务部管理办法
- 烟草仓库消防安全管理规范
- 城市照明改造工程中心管理办法
- 美容院安全消防施工合同
- 恒大园林绿化招标流程一览
- 市政工程招投标代理合同范本
- 乐器行乐器保养细则
- 税务局铝塑板安装施工协议
- 2024年社区工作者面试题库与答案
- 2024年菱角项目可行性研究报告
- 农产品质量追溯系统操作手册
- 双减背景下“减负增效”初中数学作业设计策略研究课题开题报告
- 6.18美国的独立课件-2024-2025学年统编版九年级历史上册
- 2024年高考真题-化学(贵州卷) 含答案
- 小学劳动技术三年级上册《小纽扣 自己缝》教学设计及反思
- 2024-2030年中国线束行业市场发展趋势与前景展望战略分析报告
- 《2024版CSCO胰腺癌诊疗指南》更新要点
- 《ModelBase智能驾驶建模仿真与应用》全套教学课件
- 诊断学《心脏检查》(视触叩诊听诊)课件
评论
0/150
提交评论