版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市朝阳区新朝阳实验学校2024届数学八下期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知点在轴上,则点的坐标是()A. B. C. D.2.若方程是一元二次方程,则m的值为()A.0 B.±1 C.1 D.–13.对于函数y=﹣2x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3) B.它的图象经过第一、二、三象限C.当时,y>0 D.y值随x值的增大而增大4.下列各组多项式中,没有公因式的是()A.与 B.与C.与 D.与5.京剧是中国的“国粹”,京剧脸谱是一种具有汉族文化特色的特殊化妆方法由于每个历史人物或某一种类型的人物都有一种大概的谱式,就像唱歌、奏乐都要按照乐谱一样,所以称为“脸谱”如图是京剧华容道中关羽的脸谱图案在下面的四个图案中,可以通过平移图案得到的是A. B. C. D.6.如图所示,下列结论中不正确的是()A.a组数据的最大数与最小数的差较大 B.a组数据的方差较大C.b组数据比较稳定 D.b组数据的方差较大7.如图,在菱形ABCD中MN分别在AB、CD上且AM=CN,MN与AC交于点O,连接BO若∠DAC=62°,则∠OBC的度数为()A.28° B.52° C.62° D.72°8.某市为了鼓励节约用水,按以下规定收水费:每户每月用水量不超过,则每立方米水费为元,每户用水量超过,则超过的部分每立方米水费2元,设某户一个月所交水费为元,用水量为,则y与x的函数关系用图象表示为A. B.C. D.9.如图,矩形中,是边的中点,是边上一点,,,,则线段的长为()A. B. C. D.10.已知y与(x﹣1)成正比例,当x=1时,y=﹣1.则当x=3时,y的值为()A.1 B.﹣1 C.3 D.﹣3二、填空题(每小题3分,共24分)11.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF,CF,则下列结论中一定成立的是______.(把所有正确结论的序号都填在横线上)(1)∠DFC+∠FEC=90°;(2)∠B=∠AEF;(3)CF=EF;(4)12.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形AnBnCnDn的面积是_____.13.如图,在平面直角坐标系中,直线l为正比例函数的图象,点的坐标为,过点作x轴的垂线交直线l于点,以为边作正方形;过点作直线l的垂线,垂足为,交x轴于点,以为边作正方形;过点作x轴的垂线,垂足为,交直线l于点,以为边作正方形;……按此规律操作下去,得到的正方形的面积是______________.14.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是_____(只需添加一个即可)15.甲、乙两个样本,甲的方差为0.102,乙的方差为0.06,哪个样本的数据波动大?答:________.16.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M是BC边上一个动点,联结AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转恰好至△NGF.给出以下三个结论:①∠AND=∠MPC;②△ABM≌△NGF;③S四边形AMFN=a1+b1.其中正确的结论是_____(请填写序号).17.如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.18.在平面直角坐标系中,点到坐标原点的距离是______.三、解答题(共66分)19.(10分)如图,△ABC的三个顶点的坐标分别为A(﹣1,﹣1).B(3,2),C(1,﹣2).(1)判断△ABC的形状,请说明理由.(2)求△ABC的周长和面积.20.(6分)如图,在平面直角坐标系中,已知点A(-3,0),B(0,-1),C(0,)三点.(1)求直线AB的解析式.(2)若点D在直线AB上,且DB=DC,尺规作图作出点D(保留作图痕迹),并求出点D的坐标.21.(6分)在矩形ABCD中,AB=12,BC=25,P是线段AB上一点(点P不与A,B重合),将△PBC沿直线PC折叠,顶点B的对应点是点G,CG,PG分别交线段AD于E,O.(1)如图1,若OP=OE,求证:AE=PB;(2)如图2,连接BE交PC于点F,若BE⊥CG.①求证:四边形BFGP是菱形;②当AE=9,求的值.22.(8分)如图,在矩形ABCD中,AE平分∠BAD,交BC于点E,过点E作EF⊥AD于点F,求证:四边形ABEF是正方形.23.(8分)如图,已知四边形ABCD是平行四边形,小慧同学利用直尺和规进行了如下操作:①连接AC,分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于点P、Q;②作直线PQ,分别交BC、AC、AD于点E、O、F,连接AE、CF.根据操作结果,解答下列问题:(1)线段AF与CF的数量关系是.(2)若∠BAD=120°,AE平分∠BAD,AB=8,求四边形AECF的面积.24.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.25.(10分)一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:成绩(分)456789甲组(人)125214乙组(人)114522(1)请你根据上述统计数据,把下面的图和表补充完整;一分钟投篮成绩统计分析表:统计量平均分方差中位数合格率优秀率甲组2.56680.0%26.7%乙组6.81.7686.7%13.3%(2)下面是小明和小聪的一段对话,请你根据(1)中的表,写出两条支持小聪的观点的理由.26.(10分)计算(1);(2)
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
直接利用关于x轴上点的坐标特点得出m的值,进而得出答案.【题目详解】解:点在轴上,,解得:,,则点的坐标是:.故选:A.【题目点拨】此题主要考查了点的坐标,正确得出m的值是解题关键.2、D【解题分析】
根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,且二次项系数不等于0,即可进行求解,【题目详解】因为方程是一元二次方程,所以,,解得且所以,故选D.【题目点拨】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3、A【解题分析】
根据一次函数图象上点的坐标特征和一次函数的性质依次判断,可得解.【题目详解】解:当x=﹣1时,y=3,故A选项正确,∵函数y=-2x+1图象经过第一、二、四象限,y随x的增大而减小,∴B、D选项错误,∵y>0,∴﹣2x+1>0∴x<,∴C选项错误.故选:A.【题目点拨】本题考查一次函数图象上点的坐标特征,一次函数的性质,熟练掌握一次函数的性质是解题的关键.4、C【解题分析】
分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【题目详解】解:A、=5x(1-2y),=x(1-2y),有公因式(1-2y),故本选项不符合;B、=x(a-b),=-y(a-b),有公因式(a-b),故本选项不符合;C、与没有公因式,故本选项符合;D、=(a+b)2,与(a+b)有公因式(a+b),故本选项不符合;故选C.【题目点拨】本题主要考查公因式的确定,掌握找公因式的正确方法,注意互为相反数的式子,只需改变符号即可变成公因式.5、A【解题分析】
结合图形,根据平移的概念进行求解即可得.【题目详解】解:根据平移的定义可得图案可以通过A平移得到,故选A.【题目点拨】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换关键是要观察比较平移前后物体的位置.6、D【解题分析】
方差可以衡量数据稳定性,数据越稳定,方差越小.由此可得答案.【题目详解】解:A、a组数据的最大数与最小数的差为30-10=20,b组数据的最大数与最小数的差是20-10=10,所以a组数据的最大数与最小数的差较大,故选项A正确;
B、由图中可以看出,a组数据最大数与最小数的差较大,不稳定,所以a组数据的方差较大,故选项B正确;
C和D、b组数据比较稳定,即其方差较小.故选项C正确,选项D的说法错误;
故选D.【题目点拨】本题涉及方差和极差的相关概念,比较简单,熟练掌握方差的性质是关键.7、A【解题分析】
连接OB,根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【题目详解】解:连接OB,∵四边形ABCD为菱形∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=62°,∴∠BCA=∠DAC=62°,∴∠OBC=90°-62°=28°.故选:A.【题目点拨】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.8、C【解题分析】
水费y和用水量x是两个分段的一次函数关系式,并且y随x的增大而增大,图象不会与x轴平行,可排除A、B、D.【题目详解】因为水费y是随用水量x的增加而增加,而且超过后,增加幅度更大.故选C.【题目点拨】本题考查一次函数图象问题注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.9、A【解题分析】
延长﹑交于点,先证得得出,,再由勾股定理得,然后设,根据勾股定理列出方程得解.【题目详解】解:延长﹑交于点,则,∴,,∵,∴,∴,∴,∴由勾股定理得,设,在和中,则,解得.故选:A【题目点拨】本题考查了勾股定理的应用,添加辅助线构造全等三角形,运用勾股定理列出方程是解本题的关键.10、A【解题分析】
利用待定系数法求出一次函数解析式,代入计算即可.【题目详解】解:∵y与(x-1)成正比例,
∴设y=k(x-1),
由题意得,-1=k(1-1),
解得,k=1,
则y=1x-4,
当x=3时,y=1×3-4=1,
故选:A.【题目点拨】本题考查了待定系数法求一次函数解析式,掌握待定系数法求一次函数解析式一般步骤是解题的关键.二、填空题(每小题3分,共24分)11、(1)(3)【解题分析】
分别利用平行四边形的性质以及全等三角形的判定得出△AEF≌△DMF,得出角、线段之间关系,得出(1)(3)成立,(2)不成立;再由梯形面积和平行四边形面积关系进而得出(4)不成立.【题目详解】解:∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,延长EF,交CD延长线于M,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵∠B=∠ADC>∠M,∴∠B>∠AEF,(2)不成立;∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴CF=EF,(3)成立;∴∠FEC=∠FCE,∵∠DCF+∠FEC=90°,∴∠DFC+∠FEC=90°,(1)成立;∵四边形ADCE的面积=(AE+CD)×CE,F是AD的中点,∴S△EFC=S四边形ADCE,∵S△BDC=S平行四边形ABCD=CD×CE,∴S△EFC≠S△BDC,(4)不成立;故答案为:(1)(3).【题目点拨】此题主要考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识,证出△AEF≌△DMF是解题关键.12、()n﹣1【解题分析】
根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【题目详解】∵直线l为正比例函数y=x的图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面积=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2的面积==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3的面积==()3﹣1,…由规律可知,正方形AnBnCnDn的面积=()n﹣1,故答案为()n﹣1.【题目点拨】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D1OA1=45°,正确找出规律是解题的关键.13、【解题分析】
根据正比例函数的性质得到,,均为等腰直角三角形,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【题目详解】∵点的坐标为,∴点的坐标为,∴正方形的边长为1,面积为1.∵直线l为正比例函数的图象,∴,,均为等腰直角三角形,∴,,正方形的边长为,面积为.同理,正方形的边长为,面积为……所以正方形的面积是.【题目点拨】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到,,均为等腰直角三角形,正确找出规律是解题的关键.14、∠ABC=90°或AC=BD.【解题分析】试题分析:此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为∠ABC=90°.点睛:本题主要考查正方形的判定.熟练运用正方形判定定理是解题的关键.15、甲的波动比乙的波动大.【解题分析】
根据方差的定义,方差越小数据越稳定,故可得到正确答案.【题目详解】解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.
故答案:甲的波动比乙的波动大.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16、①②③.【解题分析】
①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,可知∠DAM=∠AND,②根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;③由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=AM1=a1+b1;【题目详解】①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确,②∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,AB=NG=a,∠B=∠NGF=90°,GF=BM=b,∴△ABM≌△NGF;故②正确;③∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a1+b1=AM1,∴S四边形AMFN=AM1=a1+b1;故③正确故答案为①②③.【题目点拨】本题考查了全等三角形的判定和性质,正方形的性质,旋转的性质,正确的理解题意是解题的关键.17、【解题分析】
根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,1)代入即可得出直线的函数解析式.【题目详解】解:设平移后直线的解析式为y=3x+b.
把(0,1)代入直线解析式得1=b,
解得
b=1.
所以平移后直线的解析式为y=3x+1.
故答案为:y=3x+1.【题目点拨】本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.18、5【解题分析】
根据勾股定理解答即可.【题目详解】点P到原点O距离是.故答案为:5【题目点拨】此题考查勾股定理,关键是根据勾股定理得出距离.三、解答题(共66分)19、(1)△ABC是直角三角形(2)5【解题分析】
(1)根据点A、B、C的坐标求出AB、AC、BC的长,然后利用勾股定理逆定理判断为直角三角形;
(2)根据三角形的周长和面积公式解答即可.【题目详解】(1)△ABC是直角三角形,由勾股定理可得:ACBCAB∴AC2+BC2=AB2,∴△ABC是直角三角形,(2)△ABC的周长为:AC+BC+AB=5+2△ABC的面积为:12【题目点拨】本题考查勾股定理逆定理,解题的关键是掌握勾股定理逆定理.20、(1)y=x-1;(2)画图见解析,点D的坐标为(,).【解题分析】
(1)设直线AB解析式为:y=kx+b,把A,B坐标代入,求解即可;(2)按照题目要求画图即可,根据题意可得点D在线段BC垂直平分线上,据此可求出D点坐标.【题目详解】(1)设直线AB解析式为:y=kx+b,代入点A(-3,0),B(0,-1),得:,解得,∴直线AB解析式为:y=x-1;(2)如图所示:∵B(0,-1),C(0,),DB=DC,∴点D在线段BC垂直平分线上,∴D的纵坐标为,又∵点D在直线AB上,令y=,得x=,∴点D的坐标为(,).【题目点拨】本题考查了用待定系数法求一次函数解析式,尺规作图,垂直平分线的性质,掌握知识点是解题关键.21、(1)见解析;(2)①见解析;②【解题分析】
(1)由折叠的性质可得PB=PG,∠B=∠G=90°,由“AAS”可证△AOP≌△GOE,可得OA=GO,即可得结论;(2)①由折叠的性质可得∠PGC=∠PBC=90°,∠BPC=∠GPC,BP=PG,BF=FG,由平行线的性质可得∠BPF=∠BFP=∠GPC,可得BP=BF,即可得结论;②由勾股定理可求BE的长,EC的长,由相似三角形的性质可得,可求BF=BP=5x=,由勾股定理可求PC的长,即可求解.【题目详解】证明:(1)∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC,∠A=∠B=90°∵将△PBC沿直线PC折叠,∴PB=PG,∠B=∠G=90°∵∠AOP=∠GOE,OP=OE,∠A=∠G=90°∴△AOP≌△GOE(AAS)∴AO=GO∴AO+OE=GO+OP∴AE=GP,∴AE=PB,(2)①∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,BP=PG,BF=FG∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF∴BP=BF=PG=GF∴四边形BFGP是菱形;②∵AE=9,CD=AB=12,AD=BC=GC=25,∴DE=AD-AE=16,BE==15,在Rt△DEC中,EC==20∵BE∥PG∴△CEF∽△CGP∴∴==∴设EF=4x,PG=5x,∴BF=BP=GF=5x,∵BF+EF=BE=15∴9x=15∴x=∴BF=BP=5x=,在Rt△BPC中,PC==∴==【题目点拨】本题是相似形综合题,考查了折叠的性质,相似三角形的判定和性质,全等三角形的判定和性质,矩形的性质,菱形的判定和性质,勾股定理等知识,利用方程的思想解决问题是解本题的关键.22、证明见解析.【解题分析】
由矩形的性质得出,,证出四边形是矩形,再证明,即可得出四边形是正方形;【题目详解】证明:四边形是矩形,,,,,四边形是矩形,平分,,,,四边形是正方形.【题目点拨】本题考查了矩形的性质与判定、正方形的判定与性质等知识;熟练掌握矩形的性质,证明四边形是正方形是解决问题的关键.23、(1)FA=FC;(2)【解题分析】
(1)根据基本作图和线段垂直平分线的性质进行判断;(2))由AE平分∠BAD得到∠BAE=∠DAE=∠BAD=60°,利用平行四边形的性质得AD∥BC,则∠AEB=∠DAE=60°,所以△ABE为等边三角形,则AE=AB=8,∠B=60°,于是可计算出AC=AB=8,再证明△AEF为等边三角形得到EF=8,然后根据三角形面积公式利用四边形AECF的面积=EF×AC进行计算.【题目详解】解:(1)由作法得EF垂直平分AC,所以FA=FC.故答案为FA=FC;(2)∵AE平分∠BAD,∴∠BAE=∠DAE=∠BAD=60°,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠AEB=∠DAE=60°,∴△ABE为等边三角形,∴AE=AB=8,∠B=60°,∵EA=EC,∴∠EAC=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年跨境集装箱运输服务协议版B版
- 二零二五财产分配离婚财产协议书范本详析2篇
- 小学信息技术三年级上册第1课《信息和信息技术》说课稿
- 闽教版信息技术四年级上册《第7课 巧设形状调版块》说课稿
- 2024年高效企业管理提升顾问协议版B版
- 2025年小学语文四年级下册名师教案语文园地一
- 托班幼儿识字设计策划方案范文五篇
- 2024版标准最高借款限额协议范例版B版
- 2024年高科技产品收购保密协议3篇
- 高中信息技术人教中图版(2019)必修2 2.2信息系统的开发过程 说课稿001
- 【MOOC】隧道工程-中南大学 中国大学慕课MOOC答案
- 红色经典影片与近现代中国发展学习通超星期末考试答案章节答案2024年
- 剧作策划与管理智慧树知到期末考试答案2024年
- 铁路基础知识考试题库500题(单选、多选、判断)
- 生物医学研究的统计学方法课后习题答案 2014 主编 方积乾
- 牛仔面料成本核算
- 加拿大矿业政策
- 客情关系的建立和维护
- 2022年合理使用抗生素试题
- 简单娱乐yy频道设计模板
- 110kV变压器保护整定实例
评论
0/150
提交评论