2024届湖北省鄂州市梁子湖区八年级数学第二学期期末质量检测试题含解析_第1页
2024届湖北省鄂州市梁子湖区八年级数学第二学期期末质量检测试题含解析_第2页
2024届湖北省鄂州市梁子湖区八年级数学第二学期期末质量检测试题含解析_第3页
2024届湖北省鄂州市梁子湖区八年级数学第二学期期末质量检测试题含解析_第4页
2024届湖北省鄂州市梁子湖区八年级数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省鄂州市梁子湖区八年级数学第二学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列命题中是真命题的是()①4的平方根是2②有两边和一角相等的两个三角形全等③连结任意四边形各边中点的四边形是平行四边形④所有的直角都相等A.0个 B.1个 C.2个 D.3个2.将分式中的x,y的值同时扩大为原来的2015倍,则变化后分式的值()A.扩大为原来的2015倍 B.缩小为原来的C.保持不变 D.以上都不正确3.对于函数y=3-x,下列结论正确的是()A.y的值随x的增大而增大 B.它的图象必经过点(-1,3)C.它的图象不经过第三象限 D.当x>1时,y<0.4.分式方程的解是().A.x=-5 B.x=5 C.x=-3 D.x=35.下列命题是真命题的是()A.平行四边形的对角线互相平分且相等B.任意多边形的外角和均为360°C.邻边相等的四边形是菱形D.两个相似比为1:2的三角形对应边上的高之比为1:46.如图,平行四边形中,的平分线交于,,,则的长()A.1 B.1.5 C.2 D.37.化简的结果是()A.-2 B.2 C. D.48.如图,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于E,AD⊥BE于D,下列结论:①AC﹣BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=∠C;④BC=4AD,其中正确的个数有()A.1个 B.2个 C.3个 D.4个9.如图,在平行四边形中,和的平分线交于边上一点,且,,则的长是()A.3 B.4 C.5 D.2.510.下列计算正确的是()A. B. C. D.11.若在反比例函数的图像上,则下列结论正确的是()A. B.C. D.12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是()A.m B.m C.m D.m二、填空题(每题4分,共24分)13.直线y=kx+b经过点A(-2,0)和y轴的正半轴上一点B.如果△ABO(O为坐标原点)的面积为2,则b的值是________.14.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为_____.15.汽车行驶前油箱中有汽油52公升,已知汽车每百公里耗油8公升,油箱中的余油量Q(公升)(油箱中剩余的油量不能少于4公升)与它行驶的距离s(百公里)之间的函数关系式为_____(注明s的取值范围).16.若在实数范围内有意义,则x的取值范围是______.17.在△ABC中,AB=12,AC=5,BC=13,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则PM的最小值为_____.18.如图,矩形中,,延长交于点,延长交于点,过点作,交的延长线于点,,则=_________.三、解答题(共78分)19.(8分)已知关于的方程的一个根为一1,求另一个根及的值.20.(8分)如图,中,.(1)请用尺规作图的方法在边上确定点,使得点到边的距离等于的长;(保留作用痕迹,不写作法)(2)在(1)的条件下,求证:.21.(8分)2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米每小时?22.(10分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了两种玩具,其中类玩具的金价比玩具的进价每个多元.经调查发现:用元购进类玩具的数量与用元购进类玩具的数量相同.(1)求的进价分别是每个多少元?(2)该玩具店共购进了两类玩具共个,若玩具店将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得的利润不少于元,则该淘宝专卖店至少购进类玩具多少个?23.(10分)已知如图,在▱ABCD中,E为CD的中点,连接AE并延长,与BC的延长线相交于点F.求证:AE=FE.24.(10分)某G20商品专卖店每天的固定成本为400元,其销售的G20纪念徽章每个进价为3元,销售单价与日平均销售的关系如下表:销售单价(元)45678910日平均销售量(瓶)560520480440400360320(1)设销售单价比每个进价多x元,用含x的代数式表示日销售量.(2)若要使日均毛利润达到1840元(毛利润=总售价﹣总进价﹣固定成本),且尽可能多的提升日销售量,则销售单价应定为多少元?25.(12分)如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.26.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.求作:直线AD,使得AD∥l.作法:如图2,①在直线l上任取一点B,连接AB;②以点B为圆心,AB长为半径画弧,交直线l于点C;③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);④作直线AD.所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)证明:连接CD.∵AD=CD=__________=__________,∴四边形ABCD是().∴AD∥l().

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

根据平方根的概念、全等三角形的判定定理、中点四边形的性质判断即可.【题目详解】解:4的平方根是±2,①是假命题;有两边及其夹角相等的两个三角形全等,②是假命题;连结任意四边形各边中点的四边形是平行四边形,③是真命题;所有的直角都相等,④是真命题.故选C.【题目点拨】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2、B【解题分析】

将原式中的x、y分别用2015x、2015y代替,化简,再与原分式进行比较.【题目详解】解:∵分式中的x,y的值同时扩大为原来的2015倍,

∴原式变为:==

∴缩小为原来的

故选B.【题目点拨】本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.3、C【解题分析】

根据函数的增减性判断A;将(-1,3)的横坐标代入函数解析式,求得y,即可判断B;根据函数图像与系数的关系判断C;根据函数图像与x轴的交点可判断D.【题目详解】函数y=3-x,k=-1<0,b=3>0,所以函数经过一、二、四象限,y随x的增大而减小,故A错误,C正确;当x=-1时,y=4,所以图像不经过(-1,3),故B错误;当y=0时,x=3,又因为y随x的增大而减小,所以当x>3时,y<0,故D错误.故答案为C.【题目点拨】本题考查一次函数的图像与性质,熟练掌握图像与系数的关系,数形结合是解决函数类问题的关键.4、A【解题分析】

观察可得最简公分母是(x+1)(x-1),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【题目详解】方程两边同乘以(x+1)(x-1),

得3(x+1)=2(x-1),

解得x=-5.

经检验:x=-5是原方程的解.

故选A..【题目点拨】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5、B【解题分析】

利用平行四边形的性质、多边形的外角和、菱形的判定及相似三角形的性质判断后即可确定正确的选项.【题目详解】解:A、平行四边形的对角线互相平分但不一定相等,故错误,是假命题;B、任意多边形的外角和均为360°,正确,是真命题;C、邻边相等的平行四边形是菱形,故错误,是假命题;D、两个相似比为1:2的三角形对应边上的高之比为1:2,故错误,是假命题,故选:B.【题目点拨】本题考查了命题的判断,涉及平行四边形的性质、多边形的外角和、菱形的判定及相似三角形的性质等知识点,掌握基本知识点是解题的关键.6、C【解题分析】

根据平行四边形的性质及为角平分线可知:,又有,可求的长.【题目详解】根据平行四边形的对边相等,得:,.根据平行四边形的对边平行,得:,,又,.,.故选:.【题目点拨】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.7、B【解题分析】

先将括号内的数化简,再开根号,根据开方的结果为正数可得出答案.【题目详解】==2,故选:B.【题目点拨】本题考查了二次根式的化简,解此类题目要注意算术平方根为非负数.8、D【解题分析】①∵BE平分∠ABC,∴∠CBE=∠ABC,∵∠ABC=2∠C,∴∠EBC=∠C,∴BE=CE,∴AC-BE=AC-CE=AE;(①正确)②∵BE=CE,∴点E在线段BC的垂直平分线上;(②正确)③∵∠BAC=90°,∠ABC=2∠C,∴∠ABC=60°,∠C=30°,∵BE=CE,∴∠EBC=∠C=30°,∴∠BEA=∠EBC+∠C=60°,又∵∠BAC=90°,AD⊥BE,∴∠DAE=∠ABE=30°,∴∠DAE=∠C;(③正确)④∠ABE=30°,AD⊥BE,∴AB=2AD,∵∠BAC=90°,∠C=30°,∴BC=2AB,∴BC=4AD.(④正确)综上,正确的结论有4个,故选D.点睛:此题考查了等腰三角形的性质与判定、线段垂直平分线的性质以及30°角直角三角形的性质.此题难度适中,注意数形结合思想的应用.9、D【解题分析】

由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【题目详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=∠ABC,∠DCE=∠BCE=∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴BC=,∴AB=BC=2.5.故选D.【题目点拨】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.10、C【解题分析】

根据二次根式的加法法则判断A、B;根据二次根式的乘法法则判断C;根据二次根式的除法法则判断D.【题目详解】A、不是同类二次根式,不能合并,故本选项错误;B、不能合并,故本选项错误;C、故本选项正确;D、故本选项错误;故选:C.【题目点拨】本题考查了二次根式的运算,掌握运算法则是解题的关键.11、D【解题分析】

将点A(a,b)代入反比例函数的解析式,即可求解.【题目详解】解:∵A(a,b)在反比例函数的图象上,

∴,即ab=-2<1,

∴a与b异号,

∴<1.

故选D.【题目点拨】本题考查了反比例函数图象上点的坐标特征,函数图象上的点,一定满足函数的解析式.12、A【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定0.00000094=9.4×10-1.故选A.二、填空题(每题4分,共24分)13、1【解题分析】.而|OA|=1,故|OB|=1,又点B在y轴正半轴上,所以b=1.14、1【解题分析】分析:由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S四边形AFBD=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.详解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC=AB•AC=×4×6=1,∴S四边形AFBD=1.故答案为1点睛:本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.15、Q=52﹣8s(0≤s≤6).【解题分析】

求余量与行驶距离之间的关系,每行使百千米耗油8升,则行驶s百千米共耗油8s,所以余量为Q=52﹣8s,根据油箱中剩余的油量不能少于4公升求出s的取值范围.【题目详解】解:∵每行驶百千米耗油8升,∴行驶s百公里共耗油8s,∴余油量为Q=52﹣8s;∵油箱中剩余的油量不能少于4公升,∴52﹣8s≥4,解得s≤6,∴s的取值范围为0≤s≤6.故答案为:Q=52﹣8s(0≤s≤6).【题目点拨】本题考查一次函数在是实际生活中的应用,在求解函数自变量范围的时候,一定要考虑变量在本题中的实际意义.16、x≥-2【解题分析】分析:根据二次根式有意义的条件:被开方数为非负数,列不等式求解即可.详解:∵x+2≥0∴x≥-2.故答案为x≥-2.点睛:此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键.17、【解题分析】

根据题意可证△ABC是直角三角形,则可以证四边形AEPF是矩形,可得AP=EF,根据直角三角形斜边上中线等于斜边一半,可得AP=EF=2PM,则AP值最小时,PM值最小,根据垂线段最短,可求AP最小值,即可得PM的最小值.【题目详解】解:连接AP,∵AB2+AC2=169,BC2=169∴AB2+AC2=BC2∴∠BAC=90°,且PE⊥AB,PF⊥AC∴四边形AEPF是矩形∴AP=EF,∠EPF=90°又∵M是EF的中点∴PM=EF∴当EF值最小时,PM值最小,即当AP值最小时,PM值最小.根据垂线段最短,即当AP⊥BC时AP值最小此时S△ABC=AB×AC=BC×AP∴AP=∴EF=∴PM=故答案为【题目点拨】本题考查了矩形的判定与性质,勾股定理逆定理,以及垂线段最短,关键是证EF=AP18、【解题分析】

通过四边形ABCD是矩形以及,得到△FEM是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.【题目详解】解:如图,设NE交AD于点K,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠MFE=∠FCB,∠FME=∠EBC∵,∴△BCE为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC,∴∠FEM=∠MFE=∠FME=60°,∴△FEM是等边三角形,FM=FE=EM=2,∵EN⊥BE,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt△KME中,KE=,∴NE=NK+KE=6+,∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+,∴BE=,∴BC=BE=,故答案为:【题目点拨】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.三、解答题(共78分)19、,另一根为7.【解题分析】

把x=-1代入方程可得关于m的方程,解方程可求得m的值,把m的值代入原方程得到关于x的方程,解方程即可求得另一个根.【题目详解】把x=-1代入方程得1+6+m2-3m-5=0,即m2-3m+2=0,解得,当m=1或m=2时,方程为x²-6x-7=0,解得x=-1或x=7,即另一根为7,综上可得,另一根为7.【题目点拨】本题考查了一元二次方程的根以及解一元二次方程,正确把握一元二次方程根的定义以及解一元二次方程的方法是解题的关键.20、(1)见解析;(2)见解析.【解题分析】

(1)作出∠ABC的角平分线BM交线段AC于P,利用角平分线上的点到角的两边的距离相等可知点P即为所求;(2)过点P作PN⊥BC,交BC于点N,通过证明≌得到AB=BN,且易得PN=NC,由BC=BN+NC,等线段转化即可得证.【题目详解】解:(1)如图:利用尺规作图,作出∠ABC的角平分线BM交线段AC于P,则点到边的距离等于的长;(2)如图,过点P作PN⊥BC,交BC于点N,由(1)可知:PA=PN,在和中,,∴≌(HL),∴AB=BN,∵,∴∠C=45°,又∵∠PNC=90°∴∠NPC=∠C=45°,∴PN=NC,∴BC=BN+NC=AB+PN=AB+AP.【题目点拨】本题主要考查了利用尺规作图作一个角的角平分线,角平分线的性质及直角三角形全等的判定.熟练掌握角平分线的性质是解决本题的关键.21、提速前的速度为200千米/小时,提速后的速度为350千米/小时,【解题分析】

设列车提速前的速度为x千米每小时和列车提速后的速度为1.5千米每小时,根据关键语句“100千米缩短了10分钟”可列方程,解方程即可.【题目详解】设提速前后的速度分别为x千米每小时和1.5x千米每小时,根据题意得:解得:x=200,

经检验:x=200是原方程的根,

∴1.5x=300,

答:提速前后的速度分别是200千米每小时和300千米每小时.【题目点拨】考查了分式方程的应用,解题关键是弄懂题意,找出等量关系,列出方程.22、(1)的进价是元,的进价是元;(2)至少购进类玩具个.【解题分析】

(1)设的进价为元,则的进价为元,根据用元购进类玩具的数量与用元购进类玩具的数量相同这个等量关系列出方程即可;(2)设玩具个,则玩具个,结合“玩具点将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得利润不少于元”列出不等式并解答.【题目详解】解:(1)设的进价为元,则的进价为元由题意得,解得,经检验是原方程的解.所以(元)答:的进价是元,的进价是元;(2)设玩具个,则玩具个由题意得:解得.答:至少购进类玩具个.【题目点拨】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系,准确的解分式方程或不等式是需要掌握的基本计算能力.23、见解析【解题分析】

由已知条件易得AD∥BC,由此可得∠D=∠FCE,结合DE=CE,∠AED=∠FEC,即可证得△ADE≌△FCE,由此即可得到AE=FE.【题目详解】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠FCE,∵点E是CD的中点,∴DE=CE,∵∠AED=∠FEC,∴△ADE≌△FCE,∴AE=FE.【题目点拨】熟悉平行四边形的性质和全等三角形的判定与性质”是解答本题的关键.24、(1)﹣40x+600;(2)销售单价应定为10元.【解题分析】

(1)由表得出销售单价每增加1元时,其销售量减少40件,据此知其销售量为560-40(x+3-4)=-40x+600;

(2)根据“

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论