葫芦岛龙港区六校联考2024届数学八年级第二学期期末质量检测试题含解析_第1页
葫芦岛龙港区六校联考2024届数学八年级第二学期期末质量检测试题含解析_第2页
葫芦岛龙港区六校联考2024届数学八年级第二学期期末质量检测试题含解析_第3页
葫芦岛龙港区六校联考2024届数学八年级第二学期期末质量检测试题含解析_第4页
葫芦岛龙港区六校联考2024届数学八年级第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

葫芦岛龙港区六校联考2024届数学八年级第二学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若x=3+122019,y=3-122019,则A.12 B.8 C.23 D.20192.如图,在平面直角坐标系中,正方形OBCD的顶点O在坐标原点,点B的坐标为(2,5),点A在第二象限,反比例函数的图象经过点A,则k的值是()A. B. C. D.3.已知是方程的一个根,那么代数式的值为()A.5 B.6 C.7 D.84.下列平面图形中,不是轴对称图形的是()A. B. C. D.5.点在一次函数的图象上,则等于()A. B.5 C. D.16.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A.中位数 B.平均数 C.众数 D.方差7.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km,线路二全程90km,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h,则下面所列方程正确的是()A. B. C. D.8.如图,直线y=ax+b(a≠0)过点A(0,4),B(-3,0),则方程ax+b=0的解是()A.x=-3 B.x=4 C.x= D.x=9.如图,小明在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于的长为半径画弧,两弧相交于C、D两点,直线CD即为所求.根据他的作图方法可知四边形一定是()A.矩形 B.菱形 C.正方形 D.无法确定10.下面哪个点在函数的图象上()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,□ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是_________;12.如图,第、、、…中分别有“小正方形”个、个、个、个…,则第幅图中有“小正方形”__________个.(1)(2)(3)(4)13.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为_____.14.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD=2,AE=3,则正方形ODCE的边长等于________.15.如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为,点P是y轴上一动点,当的周长最小时,线段OP的长为______.16.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.17.小明在计算内角和时,不小心漏掉了一个内角,其和为1160,则漏掉的那个内角的度数是_____________.18.设、是方程的两个实数根,则的值为_____.三、解答题(共66分)19.(10分)已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值.(2)若函数图象在y轴的交点的纵坐标为-2,求m的值.(3)若函数的图象平行直线y=-3x–3,求m的值.(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.20.(6分)已知弹簧在一定限度内,它的长度y(厘米)与所挂重物质量x(千克)是一次函数关系.下表中记录的是两次挂不同重量重物的质量(在弹性限度内)与相对应的弹簧长度:所挂重物质量x(千克)2.55弹簧长度y(厘米)7.59求不挂重物时弹簧的长度.21.(6分)在中,,以斜边为底边向外作等腰,连接.(1)如图1,若.①求证:分;②若,求的长.(2)如图2,若,求的长.22.(8分)某市从今年1月起调整居民用水价格,每立方米消费上涨20%,小明家去年12月的水费是40元,而今年4月的水费是60元,已知小明家今年4月的用水量比去年12月用水量多4立方米,求该市今年居民用水的价格.23.(8分)求证:两组对边分别相等的四边形是平行四边形.(要求:画出图形,写出已知,求证和证明过程)24.(8分)正方形ABCD的边长为6,点E、F分别在AB、BC上,将AD、DC分别沿DE、DF折叠,点A、C恰好都落在P处,且.求EF的长;求的面积.25.(10分)(1)解不等式组:3x﹣2<≤2x+1(2)解分式方程:26.(10分)一次函数图象经过(3,8)和(5,12)两点,求一次函数解析式.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

直接利用完全平方公式将原式变形进而把已知数据代入求出答案.【题目详解】x2+2xy+y2=(x+y)2,把x=3+122019原式=(3+122019=(23)2=1.故选A.【题目点拨】此题主要考查了二次根式的化简求值,正确运用公式将原式变形是解题关键.2、D【解题分析】

作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,−x),根据正方形的性质求得对角线解得F的坐标,即可得出,解方程组求得k的值.【题目详解】作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90,∴∠AOD+∠COE=90,∵∠AOD+∠OAD=90,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,−x),∵AC和OB互相垂直平分,点B的坐标为(2,5),∴它们的交点F的坐标为(1,),∴,解得,∴k=−=,故选:D.【题目点拨】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,三角形求得的判定和性质,熟练掌握正方形的性质是解题的关键.3、C【解题分析】

因为a是方程x2−2x−1=0的一个根,所以a2−2a=1,那么代数式2a2−4a+5可化为2(a2−2a)+5,然后把a2−2a=1代入即可.【题目详解】解:∵a是方程x2−2x−1=0的一个根,∴a2−2a=1,∴2a2−4a+5=2(a2−2a)+5=2×1+5=7,故选:C.【题目点拨】本题考查了一元一次方程的解以及代数式求值,注意解题中的整体代入思想.4、A【解题分析】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.5、D【解题分析】

根据待定系数法求得一次函数的解析式,解答即可.【题目详解】一次函数的图象经过点,解得:,故选:.【题目点拨】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.6、A【解题分析】

根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【题目详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【题目点拨】考查了统计量的选择,解题的关键是了解中位数的定义.7、A【解题分析】

设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,根据线路二的用时预计比线路一用时少半小时,列方程即可.【题目详解】设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,由题意得:,故选A.【题目点拨】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.8、A【解题分析】

根据所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.【题目详解】方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,

∵直线y=ax+b过B(-3,0),

∴方程ax+b=0的解是x=-3,

故选A.【题目点拨】本题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.9、B【解题分析】

根据菱形的判定方法:四边都相等的四边形是菱形判定即可.【题目详解】根据作图方法可得:,因此四边形ABCD一定是菱形.故选:B【题目点拨】本题考查了菱形的判定,解题的关键在于根据四边相等的四边形是菱形判断.10、B【解题分析】

把各点坐标代入解析式即可求解.【题目详解】A.,y=4×1-2=2≠-2,故不在直线上;B.,y=4×3-2=10,故在直线上;C.,y=4×0.5-2=0,故不在直线上;D.,y=4×(-3)-2=-14,故不在直线上.故选B.【题目点拨】此题主要考查一次函数的图像,解题的关键是熟知坐标的代入求解.二、填空题(每小题3分,共24分)11、8【解题分析】

∵四边形ABCD是平行四边形,∴O是BD中点,△ABD≌△CDB,又∵E是CD中点,∴OE是△BCD的中位线,∴OE=BC,即△DOE的周长=△BCD的周长,∴△DOE的周长=△DAB的周长.∴△DOE的周长=×16=8cm.12、109【解题分析】

仔细观察图形的变化规律,利用规律解答即可.【题目详解】解:观察发现:第(1)个图中有1×2-1=1个小正方形;第(2)个图中有2×3-1=5个小正方形;第(3)个图中有3×4-1=11个小正方形;第(4)个图中有4×5-1=19个小正方形;…第(10)个图中有10×11-1=109个小正方形;故答案为109.【题目点拨】此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题.13、【解题分析】

在一次函数y=x+4中,分别令x=0,y=0,解相应方程,可求得A、B两点的坐标,由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP⊥AB时,满足条件,根据直角三角形面积的不同表示方法可求得OP的长,即可求得EF的最小值.【题目详解】解:∵一次函数y=x+4中,令x=0,则y=4,令y=0,则x=-3,∴A(0,4),B(-3,0),∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,OB=3,由勾股定理得:AB==5,∵AB·OP=AO·BO=2S△OAB,∴OP=,故答案为:.【题目点拨】本题考查了一次函数图象上点的坐标特点,勾股定理、矩形的判定与性质、最值问题等,熟练掌握相关知识、确定出OP的最小值是解题的关键.14、1【解题分析】

设正方形ODCE的边长为x,则CD=CE=x,根据全等三角形的性质得到AF=AE,BF=BD,根据勾股定理即可得到结论.【题目详解】解:设正方形ODCE的边长为x,

则CD=CE=x,

∵△AFO≌△AEO,△BDO≌△BFO,

∴AF=AE,BF=BD,

∴AB=2+3=5,

∵AC2+BC2=AB2,

∴(3+x)2+(2+x)2=52,

∴x=1,

∴正方形ODCE的边长等于1,

故答案为:1.【题目点拨】本题考查了勾股定理的证明,全等三角形的性质,正方形的性质,熟练掌握勾股定理是解题的关键.15、【解题分析】

根据题意可以得到点A、B、C的坐标和点D的坐标,然后最短路径问题可以求得点P的坐标,从而可以求得OP的长.【题目详解】解:作点D关于y轴的对称点,连接交y轴于点P,则点P即为所求,直线AC的解析式为,当时,,当时,,点A的坐标为,点C的坐标为,点D的坐标为,点B的坐标为,点的坐标为,设过点B和点的直线解析式为,,解得,,过点B和点的直线解析式为,当时,,即点P的坐标为,.故答案为.【题目点拨】本题考查一次函数的性质、矩形的性质、最短路线问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16、【解题分析】试题解析:所以故答案为17、100°【解题分析】

根据n边形的内角和是(n-2)•180°,少计算了一个内角,结果得1160,可以解方程(n-2)•180°≥1160,由于每一个内角应大于0°而小于180度,则多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.【题目详解】解:设多边形的边数是n.

依题意有(n-2)•180°≥1160°,解得:则多边形的边数n=9;

九边形的内角和是(9-2)•180=1260度;

则未计算的内角的大小为1260-1160°=100°.

故答案为:100°【题目点拨】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.18、-1【解题分析】

根据根与系数的关系可得出,,将其代入中即可得出结论.【题目详解】∵、是方程的两个实数根,∴,,∴.故答案为:-1.【题目点拨】本题考查了根与系数的关系,牢记“两根之和等于,两根之积等于”是解题的关键.三、解答题(共66分)19、(1)m=3;(2)m=1;(3)m=-2;(4)m<-.【解题分析】

(1)把原点坐标代入函数y=(2m+1)x+m-3可解出m;

(2)先确定直线y=(2m+1)x+m-3与y轴的交点坐标,再根据题意得到m-3=-2,然后解方程;

(3)根据两直线平行的问题得到2m+1=-3,然后解方程;

(4)根据一次函数的性质得到2m+1<0,然后解不等式.【题目详解】(1)把(0,0)代入y=(2m+1)x+m-3得m-3=0,

解得m=3;

(2)把x=0代入y=(2m+1)x+m-3得y=m-3,则直线y=(2m+1)x+m-3与y轴的交点坐标为(0,m-3),

所以m-3=-2,

解得m=1;

(3)由直线y=(2m+1)x+m-3平行直线y=-3x-3,

所以2m+1=-3,

解得m=-2;

(4)根据题意得2m+1<0,

解得m<.【题目点拨】本题难度中等.主要考查学生对一次函数各知识点的掌握.属于中考常见题型,应加强训练,同时,注意数形结合的应用.20、不挂重物时弹簧的长度为1厘米【解题分析】

弹簧总长y=挂上xkg的重物时弹簧伸长的长度+弹簧原来的长度,把相关数值代入即可.【题目详解】设长度y(厘米)与所挂重物质量x(千克)的一次函数关系式是:y=kx+b(k≠0)将表格中数据分别代入为:,解得:,∴y=x+1,当x=0时,y=1.答:不挂重物时弹簧的长度为1厘米【题目点拨】此题考查一次函数的应用,解题关键在于列出方程21、(1)①见详解,②1;(2)-【解题分析】

(1)①过点P作PM⊥CA于点M,作PN⊥CB于点N,易证四边形MCNP是矩形,利用已知条件再证明△APM≌△BPN,因为PM=PN,所以CP平分∠ACB;②由题意可证四边形MCNP是正方形,(2)如图,以AC为边作等边△AEC,连接BE,过点E作EF⊥BC于F,由”SAS“可证△ABE≌△APC,可得BE=CP=5,由直角三角形的性质和勾股定理可求BC的长.【题目详解】证明:(1)①如图1,过点P作PM⊥CA于点M,作PN⊥CB于点N,∴∠PMC=∠PNC=90°,∵∠ACB=90°∴四边形MCNP是矩形,∴∠MPN=90°,∵PA=PB,∠APB=90°,∴∠MPN−∠APN=∠APB−∠APN,∴∠APM=∠NPB,∵∠PMA=∠PNB=90°,在△APM和△BPN中,∴△APM≌△BPN(AAS),∴PM=PN,∴CP平分∠ACB;②∵四边形MCNP是矩形,且PN=PM,∴四边形MCNP是正方形,∴PN=CN=PM=CM∴PC=PN=6,∴PN=6=CN=CM=MP∴AM=CM−AC=1∵△APM≌△BPN∴AM=BN,∴BC=CN+BN=6+AM=6+1=1.(2)如图,以AC为边作等边△AEC,连接BE,过点E作EF⊥BC于F,∵△AEC是等边三角形∴AE=AC=EC=5,∠EAC=∠ACE=60°,∵△APB是等腰三角形,且∠APB=60°∴△APB是等边三角形,∴∠PAB=60°=∠EAC,AB=AP,∴∠EAB=∠CAP,且AE=AC,AB=AP,∴△ABE≌△APC(SAS)∴BE=CP=5,∵∠ACE=60°,∠ACB=90°,∴∠ECF=30°,∴EF=EC=,FC=EF=,∵BF=,∴BC=BF−CF=-【题目点拨】本题是四边形综合题,考查了矩形判定和性质,正方形的判定和性质,全等三角形的判定和性质,等边三角形的性质,直角三角形的性质,角平分线的性质等知识,添加恰当辅助线构造全等三角形是本题的难点.22、该市今年居民用水价格为3元/立方米.【解题分析】分析:首先设该市去年居民用水价格为元/立方米,则今年居民用水价格为元/立方米,根据用水量列出分式方程,从而得出答案.详解:解:设该市去年居民用水价格为元/立方米,则今年居民用水价格为元/立方米,依题意得:,解这个方程得:,经检验:是原方程的解,∴∴该市今年居民用水价格为3元/立方米.点睛:本题主要考查的是分式方程的应用,属于中等难度题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论