版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省邹城市邹城中学数学八下期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AO=CO D.AC⊥BD2.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的和最小值为()A. B.4 C.3 D.3.下面计算正确的是()A. B. C. D.(a>0)4.下列因式分解正确的是()A. B.C. D.5.过原点和点2,3的直线的解析式为()A.y=32x B.y=26.已知一次函数y=(m+1)x+n-2的图象经过一.三.四象限,则m,n的取值范围是()A.m>-1,n>2 B.m<-1,n>2 C.m>-1,n<2 D.m<-1,n<27.如图,在数轴上,点A表示的数是2,△OAB是Rt△,∠OAB=90°,AB=1,现以点O为圆心,线段OB长为半径画弧,交数轴负半轴于点C,则点C表示的实数是()A.﹣ B.﹣ C.﹣3 D.﹣28.下列图形中,对称轴的条数最少的图形是A. B. C. D.9.下列标志既是轴对称图形又是中心对称图形的是()A. B. C. D.10.已知一次函数y=(2m-1)x+1的图象上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,那么m的取值范围是()A.m< B.m> C.m<2 D.m>-211.如图,已知一次函数的图象与轴,轴分别交于点(2,0),点(0,3).有下列结论:①关于的方程的解为;②当时,;③当时,.其中正确的是()A.①② B.①③ C.②③ D.①③②12.如图,在△ABC中,若AB=AC=6,BC=4,D是BC的中点,则AD的长等于()A.4 B.2 C.2 D.4二、填空题(每题4分,共24分)13.如图,中,,,,是内部的任意一点,连接,,,则的最小值为__.14.如图,有Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为.15.的整数部分是a,小数部分是b,则________.16.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=.17.己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.18.已知点A(﹣,a),B(3,b)在函数y=﹣3x+4的象上,则a与b的大小关系是_____.三、解答题(共78分)19.(8分)某专卖店准备购进甲、乙两种运动鞋,其进价和售价如下表所示.已知用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.运动鞋价格甲乙进价元/双)mm-30售价(元/双)300200(1)求m的值;(2)要使购进的甲,乙两种运动鞋共200双的总利润不少于21700元且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店决定对甲种运动鞋每双优惠a(60<a<80)元出售,乙种运动鞋价格不变,那么该专卖店要获得最大利润应如何进货?20.(8分)先阅读下面的内容,再解决问题:问题:对于形如这样的二次三项式,可以用公式法将它分解成的形式.但对于二次三项式,就不能直接运用公式了.此时,我们可以在二次三项式中先加上一项,使它与成为一个完全平方式,再减去,整个式子的值不变,于是有:像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:______;(2)若△ABC的三边长是a,b,c,且满足,c边的长为奇数,求△ABC的周长的最小值;(3)当x为何值时,多项式有最大值?并求出这个最大值.21.(8分)先化简,再求的值,其中x=222.(10分)A、B两城相距900千米,一辆客车从A城开往B城,车速为每小时80千米,半小时后一辆出租车从B城开往A城,车速为每小时120千米.设客车出发时间为t(小时)(1)若客车、出租车距A城的距离分别为y1、y2,写出y1、y2关于t的函数关系式;(2)若两车相距100千米时,求时间t;(3)已知客车和出租车在服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案,方案一:继续乘坐出租车到C城,C城距D处60千米,加油后立刻返回B城,出租车加油时间忽略不计;方案二:在D处换乘客车返回B城,试通过计算,分析小王选择哪种方式能更快到达B城?23.(10分)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.24.(10分)如图所示,已知△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点A关于原点O对称的点坐标;(1)将△ABC向右平移6个单位,再向上平移3个单位,得到△A1B1C1,画出△A1B1C1;(3)将△ABC绕点O逆时针转90°,得到△A1B1C1,画出△A1B1C1.25.(12分)如图,已知A、B两艘船同时从港口Q出发,船A以40km/h的速度向东航行;船B以30km/h的速度向北航行,它们离开港口2h后相距多远?26.已知,利用因式分解求的值.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】
根据平行四边形的对边平行和平行线的性质可对A进行判断;根据平行四边形的对角相等可对B进行判断;根据平行四边形的对边相等可对A进行判断;根据平行四边形的对角线互相平分可对D进行判断.【题目详解】A、在▱ABCD中,∵AB∥CD,∴∠1=∠2,所以A选项结论正确;B、在▱ABCD中,∠BAD=∠BCD,所以B选项结论正确;C、在▱ABCD中,AO=CO,所以C选项的结论正确;D、在▱ABCD中,OA=OC,OB=OD,所以D选项结论错误.故选D.【题目点拨】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.2、B【解题分析】
由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为16,可求出AB的长,从而得出结果.【题目详解】解:设BE与AC交于点P',连接BD.∵点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.∵正方形ABCD的面积为16,∴AB=1,又∵△ABE是等边三角形,∴BE=AB=1.故选:B.【题目点拨】本题考查的是正方形的性质和轴对称-最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.3、B【解题分析】分析:根据合并同类二次根式、二次根式的除法、二次根式的乘法、二次根式的性质与化简逐项计算分析即可.详解:A.∵4与不是同类二次根式,不能合并,故错误;B.∵,故正确;C.,故错误;D.(a>0),故错误;故选B.点睛:本题考查了二次根式的有关运算,熟练掌握合并同类二次根式、二次根式的除法、二次根式的乘法、二次根式的性质是解答本题的关键.4、C【解题分析】
利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.【题目详解】解:A、,故此选项不符合题意;
B、,故此选项不符合题意;C、,故此选项符合题意;
D、,故此选项不符合题意;
故选:C.【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、A【解题分析】
设直线的解析式为y=kx(k≠0),把(2,3)代入函数解析式,根据待定系数法即可求得.【题目详解】解:∵直线经过原点,∴设直线的解析式为y=kx(k≠0),把(2,3)代入得3=2k,解得k=该直线的函数解析式为y=32x故选:A.【题目点拨】此题主要考查了用待定系数法求函数的解析式.熟练掌握待定系数法是解题的关键.6、C【解题分析】
根据一次函数的图象和性质得出m+1>0,n-2<0,解不等式即可.【题目详解】解:∵一次函数y=(m+1)x+n-2的图象经过一.三.四象限∴m+1>0,n-2<0∴m>-1,n<2,故选:C.【题目点拨】本题主要考查了一次函数图象与系数的关系,关键是掌握数形结合思想.7、B【解题分析】
直接根据勾股定理,在Rt△AOB中,,求出OB长度,再求出OC长度,结合数轴即可得出结论.【题目详解】解:∵在Rt△AOB中,OA=2,AB=1,
∴OB==.
∵以O为圆心,以OB为半径画弧,交数轴的正半轴于点C,
∴OC=OB=,
∴点C表示的实数是-.
故选B.【题目点拨】本题考查的是实数与数轴以及复杂作图,熟知实数与数轴上各点是一一对应关系是解答此题的关键.8、B【解题分析】
把各个图形抽象成基本的几何图形,再分别找出它们的对称轴,圆有无数条对称轴,正方形有4条对称轴,等边三角形有三条对称轴;找出各个图形中所有的对称轴,再比较即可找出对称轴最少的图形.【题目详解】选项A、C、D中各有4条对称轴,选项B中只有1条对称轴,所以对称轴条数最少的图形是B.故选:B.【题目点拨】本题主要考查的是轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.9、C【解题分析】A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选C.10、B【解题分析】分析:先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m-1>0,解不等式即可求解.详解:∵当x1<x2时,有y1<y2∴y随x的增大而增大∴2m-1>0,∴m>.故选:B.点睛:本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.11、A【解题分析】
根据一次函数图象的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【题目详解】由图象得:①关于x的方程kx+b=0的解为x=2,故①正确;②当x>2时,y<0,故②正确;③当x<0时,y>3,故③错误;故选:A【题目点拨】本题考查了一次函数图象的性质及一次函数与一元一次方程的关系,对于任意一个以x为未知数的一元一次方程,它都可以转化为kx+b=0(k≠0)的形式,解一元一次方程相当于在某个一次函数的函数y=kx+b值为0时,求自变量的值.12、A【解题分析】
根据等腰三角形的性质得到AD⊥BC,BD=BC=1,根据勾股定理计算即可.【题目详解】∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=1,∴AD==4,故选:A.【题目点拨】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.二、填空题(每题4分,共24分)13、.【解题分析】
将绕着点逆时针旋转,得到,连接,,通过三角形全等得出三点共线长度最小,再利用勾股定理解答即可.【题目详解】如图,将绕着点逆时针旋转,得到,连接,,,,,,,是等边三角形当点,点,点,点共线时,有最小值,故答案为:.【题目点拨】本题考查三点共线问题,正确画出辅助线是解题关键.14、【解题分析】试题分析:根据勾股定理即可求得结果.由题意得,正方形M与正方形N的面积之和为考点:本题考查的是勾股定理点评:解答本题的关键是根据勾股定理得到最大正方形的面积等于正方形M、N的面积和.15、2【解题分析】
因为1<<2,由此得到的整数部分a,再进一步表示出其小数部分b.【题目详解】因为1<<2,所以a=1,b=−1.故(1+)(-1)=2,故答案为:2.【题目点拨】此题考查估算无理数的大小,解题关键在于得到的整数部分a.16、1。【解题分析】试题分析:∵四边形ABCD是矩形,∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形.∴AB=OA=12故答案是:1.考点:含30度角的直角三角形;矩形的性质.17、【解题分析】分析:根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.详解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,∴S菱形ABCD=AC•BD=×2×2=2.故答案为2.点睛:本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.18、a>b【解题分析】
根据k<0,y随x增大而减小解答【题目详解】解:∵k=﹣3<0,∴y随x的增大而减小,∵﹣<3,∴a>b.故答案为:a>b.【题目点拨】此题主要考查了一次函数的图像上点的坐标特征,利用一次函数的增减性求解更简便三、解答题(共78分)19、(1)m=150;(2)该专卖店有9种进货方案;(3)此时应购进甲种运动鞋82双,购进乙种运动鞋118双.【解题分析】
(1)根据“用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同”列出方程并解答;(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200−x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【题目详解】(1)依题意得:,解得:m=150,经检验:m=150是原方程的根,∴m=150;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,解得:81≤x≤90,∵x为正整数,∴该专卖店有9种进货方案;(3)设总利润为W元,则W=(300﹣150﹣a)x+(200﹣120)(200﹣x)=(70﹣a)x+16000,①当60<a<70时,70﹣a>0,W随x的增大而增大,当x=90时,W有最大值,即此时应购进甲种运动鞋90双,购进乙种运动鞋110双;②当a=70时,70﹣a=0,W=16000,(2)中所有方案获利都一样;③当70<a<80时,70﹣a<0,W随x的增大而减小,当x=82时,W有最大值,即此时应购进甲种运动鞋82双,购进乙种运动鞋118双.【题目点拨】本题考查了一次函数的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系;解题时需要根据一次项系数的情况分情况讨论.20、(1)(a−3)(a−1);(2)当a=7,b=4,c=1时,△ABC的周长最小,最小值是:7+4+1=16;(3)当x=−1时,多项式−2x2−4x+3有最大值,最大值是1.【解题分析】
(1)根据题目中的例子,可以对题目中的式子配方后分解因式;(2)根据题目中的式子,利用配方法可以求得a、b的值,根据三角形三边关系确定c的值,由三角形周长可得结论;(3)根据配方法即可求出答案.【题目详解】解:(1)a2−8a+11=(a2−8a+16)−1=(a−4)2−12=(a−3)(a−1),故答案为:(a−3)(a−1);(2)∵a2+b2−14a−8b+61=0,∴(a2−14a+49)+(b2−8b+16)=0,∴(a−7)2+(b−4)2=0,∴a−7=0,b−4=0,解得,a=7,b=4,∵△ABC的三边长是a,b,c,∴3<c<11,又∵c边的长为奇数,∴c=1,7,9,当a=7,b=4,c=1时,△ABC的周长最小,最小值是:7+4+1=16;(3)−2x2−4x+3,=−2(x2+2x+1−1)+3,=−2(x+1)2+1,∴当x=−1时,多项式−2x2−4x+3有最大值,最大值是1.【题目点拨】本题考查配方法,三角形三边关系,解题的关键是正确理解题意给出的方法,解决问题,本题属于基础题型.21、,.【解题分析】
首先把分式利用通分、约分化简,然后代入数值计算即可求解.【题目详解】解:===,当x=3时,原式==.【题目点拨】本题考查分式的化简求值,熟练掌握分式的运算法则是解题的关键.22、(1)y1=80t,y2=﹣120t+960;(2)两车相距100千米时,时间为4.3小时或5.3小时;(3)选择方案一能更快到达B城,理由见解析【解题分析】
(1)根据路程=速度×时间,即可得出y1、y2关于t的函数关系式;
(2)分两种情况讨论:①y2-y1=100;②y1-y2=100,据此列方程解答即可;
(3)先算出客车和出租车在服务站D处相遇的时间,再分别求出方案一、方案二所需的时间进行比较即可.【题目详解】(1)由题意得y1=80ty2=900﹣120(t﹣0.5)=﹣120t+960(2)如果两车相距100千米,分两种情况:①y2﹣y1=100,即﹣120t+960﹣80t=100解得t=4.3②y1﹣y2=100,即80t﹣(﹣120t+960)=100解得t=5.3所以,两车相距100千米时,时间为4.3小时或5.3小时.(3)如果两车相遇,即y1=y2,80t=﹣120t+960,解得t=4.8此时AD=80×4.8=384(千米),BD=900﹣384=516(千米)方案一:t1=(2×60+516)÷120=5.3(小时)方案二:t2=516÷80=6.45(小时)∵t2>t1∴方案一更快答:小王选择方案一能更快到达B城.【题目点拨】本题考查了一元一次方程的应用以及一次函数的应用,解题的关键根据数量关系找出方程(或函数关系式).本题属于中档题,难度不大,但较繁琐,解决此类型题目时,根据数量关系列出方程(或函数关系式),再一步步的进行计算即可.23、(1)m=3;(2)m=1;(3)m=1;(4)m<﹣.【解题分析】
(1)根据函数图象经过原点可得m﹣3=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 雨雪天气应急预案15篇
- 宽基指数创新探索:基于行业均衡的视角- 2024
- 2025届甘肃省白银市会宁县会宁县第一中学高三适应性调研考试数学试题含解析
- 陕西省汉滨区2025届高三下学期一模考试数学试题含解析
- 2025届宁夏青铜峡一中高考仿真卷数学试卷含解析
- 2025届新疆石河子市第二中学高三第一次调研测试英语试卷含解析
- 2025届甘肃省嘉峪关市重点中学高考适应性考试英语试卷含解析
- 《飞利浦灯泡培训》课件
- 贵州省都匀第一中学2025届高考数学倒计时模拟卷含解析
- 2025届山东省潍坊市第一中学高三下学期联合考试语文试题含解析
- 腕管综合征护理常规
- 幼儿园 中班数学《让谁先吃好呢》
- 期末达标测试卷(试题)-2024-2025学年人教PEP版英语四年级上册
- 油层物理(山东联盟)智慧树知到答案2024年中国石油大学(华东)
- 讲普通话、写规范字、做文明人主题班会教育
- 【马林巴独奏曲雨之舞的演奏技巧和情感处理探析5000字(论文)】
- 2024至2030年中国融媒体行业市场深度分析及发展趋势预测报告
- DL∕T 2024-2019 大型调相机型式试验导则
- 营销咨询服务合同(2024版)
- 赣南美食-英语版
- 大酒店风险分级管控和隐患排查治理双体系文件
评论
0/150
提交评论