版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省淄博市临淄区八年级数学第二学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的长方形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=-x+5 D.y=-x+102.下列各组数据中,能构成直角三角形的三边边长的是()A.l,2,3 B.6,8,10 C.2,3,4 D.9,13,173.下列函数中,自变量的取值范围是的是()A. B. C. D.4.若a>b,则下列式子中正确的是()A.-15a<-15b B.3-a>3-b C.2a5.一组数据为:3130352930,则这组数据的方差是()A.22 B.18 C.3.6 D.4.46.估计5﹣的值应在()A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间7.函数的图象经过点,若,则,、0三者的大小关系是()A. B. C. D.8.如图,菱形的面积为,正方形的面积为,则菱形的边长为()A. B. C. D.9.如图所示,在△ABC中,其中BC⊥AC,∠A=30°,AB=8m,点D是AB的中点,点E是AC的中点,则DE的长为()A.5 B.4 C.3 D.210.如图中的图象(折线ABCDE)描述了一汽车在某一直道上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系.根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为1603千米/④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法有()A.1个 B.2个 C.3个 D.4个11.在Rt△ABC中,∠C=90°,D为BC上一点,要使点D到AB的距离等于DC,则必须满足()A.点D是BC的中点B.点D在∠BAC的平分线上C.AD是△ABC的一条中线D.点D在线段BC的垂直平分线上12.体育课上,某班三名同学分别进行了6次短跑训练,要判断哪一名同学的短跑成绩比较稳定,通常需要比较三名同学短跑成绩的()A.平均数 B.频数 C.方差 D.中位数二、填空题(每题4分,共24分)13.如图,在四边形ABCD中,AB=BC=2,CD=1,AD=3,若∠B=90°,则∠BCD的度数为____________________.14.菱形的两条对角线长分别为cm和cm,则该菱形的面积__________.15.若直线和直线的交点在第三象限,则m的取值范围是________.16.若二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上,则m=.17.关于x的一元二次方程无实数根,则m的取值范围是______.18.已知一次函数图像不经过第一象限,求m的取值范围是__________.三、解答题(共78分)19.(8分)如图,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=1.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)季末打折促销,甲乙两商场促销方式不同,两商场实际付费y(元)与标价x(元)之间的函数关系如图所示折线O-A-C(虚线)表示甲商场,折线O-B-C表示乙商场(1)分别求射线AC,BC的解析式.(2)张华说他必须选择乙商场,由此推理张华计划购物所需费用x(元)(标价)的范围是______.(3)李明说他必须选择甲商场,由此推理李明计划购物所需费用x(元)(标价)的范围是______.21.(8分)在一张足够大的纸板上截取一个面积为的矩形纸板,如图,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形,如图,设小正方形的边长为厘米.、(1)若矩形纸板的一个边长为.①当纸盒的底面积为时,求的值;②求纸盒的侧面积的最大值;(2)当,且侧面积与底面积之比为时,求的值.22.(10分)如图1,□ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的□A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.23.(10分)如图,直线与x轴、y轴分别交于点A和点B,点C在线段AB上,点D在y轴的负半轴上,C、D两点到x轴的距离均为1.(1)点C的坐标为,点D的坐标为;(1)点P为线段OA上的一动点,当PC+PD最小时,求点P的坐标.24.(10分)我市一水果销售公司,需将一批鲜桃运往某地,有汽车、火车、运输工具可供选择,两种运输工具的主要参考数据如下:运输工具途中平均速度(单位:千米/时)途中平均费用(单位:元/千米)装卸时间(单位:小时)装卸费用(单位:元)汽车75821000火车100642000若这批水果在运输过程中(含装卸时间)的损耗为150元/时,设运输路程为x()千米,用汽车运输所需总费用为y1元,用火车运输所需总费用为y2元.(1)分别求出y1、y2与x的关系式;(2)那么你认为采用哪种运输工具比较好?25.(12分)八(1)班数学老师将本班某次参加的数学竞赛成绩(得分取整数,满分100分)进行整理统计后,制成如下的频数直方图和扇形统计图,请根据统计图提供的信息,解答下列问题:(1)在分数段70.5~80.5分的频数、频率分别是多少?(2)m、n、的值分别是多少?26.如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且BE=DF连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】
设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D.
C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=−x+5,故选C.点睛:本题主要考查矩形的性质及点的坐标的意义,根据坐标的意义得出x,y之间的关系是解题的关键.2、B【解题分析】
根据勾股定理逆定理即可求解.【题目详解】A.12+22=5,32=9,故不能构成直角三角形;B.62+82=102,故为直角三角形;C.22+32≠42,故不能构成直角三角形;D.92+132≠172,故不能构成直角三角形;故选B.【题目点拨】此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的逆定理.3、D【解题分析】
根据二次根式和分式方程的性质求出各项自变量的取值范围进行判断即可.【题目详解】A.,自变量的取值范围是;B.,自变量的取值范围是;C.,自变量的取值范围是;D.,自变量的取值范围是;故答案为:D.【题目点拨】本题考查了方程自变量的问题,掌握二次根式和分式方程的性质是解题的关键.4、A【解题分析】
根据不等式的性质即可判断.【题目详解】∵a>b,∴-1∴3-a<3-b,故B错误;∴2a>2b,故C错误;b-a<0,故D错误;故选A.【题目点拨】此题主要考查不等式,解题的关键是熟知不等式的性质.5、D【解题分析】
根据方差的定义先计算出这组数的平均数然后再求解即可.【题目详解】解:这组数据的平均数为=31,所以这组数据的方差为×[(31﹣31)2+(30﹣31)2+(35﹣31)2+(29﹣31)2+(30﹣31)2]=4.4,故选D.【题目点拨】方差和平均数的定义及计算公式是本题的考点,正确计算出这组数的平均数是解题的关键.6、D【解题分析】
先合并后,再根据无理数的估计解答即可.【题目详解】5−=5−2=3=,∵7<<8,∴5−的值应在7和8之间,故选D.【题目点拨】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.7、A【解题分析】
根据反比例函数图象上点的坐标特征得到x1•y1=x2•y2=-6,然后根据x1<x2<0即可得到y1与y2的大小关系.【题目详解】根据题意得x1•y1=x2•y2=6,则函数y=的图象位于第一、三象限,且在每一象限内y随x的增大而减小,∵x1<x2<0,∴y2<y1<0,故选A.【题目点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.8、A【解题分析】
根据正方形的面积可用对角线进行计算解答即可.【题目详解】解:因为正方形AECF的面积为50cm2,
所以AC==10cm,
因为菱形ABCD的面积==120,
所以BD==24cm,
所以菱形的边长==13cm.
故选:A.【题目点拨】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.9、D【解题分析】
根据D为AB的中点可求出AD的长,再根据在直角三角形中,30°角所对的直角边等于斜边的一半即可求出DE的长度.【题目详解】解:∵D为AB的中点,AB=8,∴AD=4,∵DE⊥AC于点E,∠A=30°,∴DE=AD=2,故选D.【题目点拨】本题考查了直角三角形的性质:直角三角形中,30°角所对的直角边等于斜边的一半.10、B【解题分析】
根据函数图形的s轴判断行驶的总路程,从而得到①错误;根据s不变时为停留时间判断出②正确;根据平均速度=总路程÷总时间列式计算即可判断出③正确;再根据一次函数图象的实际意义判断出④错误.【题目详解】①由图可知,汽车共行驶了120×2=240千米,故本小题错误;②汽车在行驶途中停留了2-1.5=0.5小时,故本小题正确;③汽车在整个行驶过程中的平均速度为240千米/时,故本小题正确;④汽车自出发后3小时至4.5小时之间行驶离出发地越来越近,是匀速运动,故本小题错误;综上所述,正确的说法有②③共2个.故选:B.【题目点拨】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,准确识图,理解转折点的实际意义是解题的关键.11、B【解题分析】
根据角平分线的判定定理解答即可.【题目详解】如图所示,DE为点D到AB的距离.∵DC=DE,∠C=90°,DE⊥AB,∴AD平分∠CAD,则点D在∠BAC的平分线上.故选B.【题目点拨】本题考查了角平分线的判定,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.12、C【解题分析】
根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生6次短跑训练成绩的方差.【题目详解】由于方差能反映数据的稳定性,需要比较这两名学生6次短跑训练成绩的方差.故选C.【题目点拨】本题考查了方差,关键是掌握方差所表示的意义,属于基础题,比较简单.二、填空题(每题4分,共24分)13、135°【解题分析】
根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACD=90°,进而得出答案.【题目详解】连接AC,在Rt△ABC中,由勾股定理得:,∵AB=BC,∴∠BAC=∠ACB=45°,∵CD=1,AD=3,AC=2,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠DCB=90°+45°=135°,故答案为:135°.【题目点拨】本题考查了勾股定理,勾股定理的逆定理的应用,能求出△ACD是直角三角形是解此题的关键.14、【解题分析】
根据菱形的面积等于两对角线乘积的一半即可求得其面积.【题目详解】由已知得,菱形面积=.故答案为:.【题目点拨】此题考查菱形的性质,解题关键在于掌握运算公式.15、m<−1.【解题分析】
首先把y=2x-1和y=m-x,组成方程组,求解,x和y的值都用m来表示,根据题意交点坐标在第三象限表明x、y都小于0,即可求得m的取值范围.【题目详解】∵,∴解方程组得:,∵直线y=2x−1和直线y=m−x的交点在第三象限,∴x<0,y<0,∴m<−1,m<0.5,∴m<−1.故答案为:m<−1.【题目点拨】此题考查两条直线相交或平行问题,解题关键在于用m来表示x,y的值.16、1【解题分析】试题分析:由二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上知,该二次函数的对称轴是直线x=0,根据二次函数对称轴的公式x=-b-2m-1=0考点:二次函数对称轴点评:本题属于简单的公式应用题,相对来说比较简单,但是仍然要求学生对相应的公式牢记并理解,注意公式中各字母表示的含义。17、m>2【解题分析】
利用一元二次方程的定义和判别式的意义得到m-1≠0且△=(-2)2-4(m-1)<0,然后求出两不等式的公共部分即可.【题目详解】解:∵要保证方程为二次方程故m-1≠0得m≠1,又∵方程无实数根,∴△=b2-4ac=(-2)2-4(m-1)<0,解得m>2,故答案为m>2.【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.18、1<m≤2【解题分析】【分析】一次函数图像不经过第一象限,则一次函数与y轴的交点在y轴的负半轴或原点.【题目详解】∵图象不经过第一象限,即:一次函数与y轴的交点在y轴的负半轴或原点,∴1-m<0,m-2≤0∴m的取值范围为:1<m≤2故答案为:1<m≤2【题目点拨】本题考核知识点:一次函数的图象.解题关键点:理解一次函数的性质.三、解答题(共78分)19、(1)BC=15;(2)S△BCD=2.【解题分析】
(1)根据勾股定理可求得BC的长.
(2)根据勾股定理的逆定理可得到△BCD也是直角三角形,根据三角形的面积即可得到结论.【题目详解】(1)∵∠A=90°,AB=9,AC=12∴BC==15,(2)∵BC=15,BD=8,CD=1∴BC2+BD2=CD2∴△BCD是直角三角形∴S△BCD=×15×8=2.【题目点拨】本题考查了勾股定理、勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理,通过作辅助线证明三角形是直角三角形是解决问题的关键.20、(1)射线AC解析式y=0.9x+5,射线BC解析式y=0.875x+12.5;(2)x>300;(3)50<x<300.【解题分析】
(1)运用待定系数法求出射线AC的解析式,得出点C的横坐标,再运用待定系数法求射线BC的解析式即可;(2)根据图象解答即可;(3)根据图象解答即可.【题目详解】(1)解:(1)设射线AC的解析式为y=k1x+b1,根据题意得,50k1∴射线AC的解析式为y解方程9得x=300,即点C的坐标为(300,275),设射线BC的解析式为y=k2x+b2,根据题意得,100k2∴射线BC的解析式为:y=(2)张华说他必须选择乙商场,由此推理张华计划购物所需费用x(元)(标价)的范围是x>300.(3)李明说他必须选择甲商场,由此推理李明计划购物所需费用x(元)(标价)的范围是50<x<300.【题目点拨】本题考查了一次函数解实际问题的运用,运用一次函数建立不等式确定优惠方案在实际问题中的运用,解答时根据条件求出函数的解析式是解答本题的关键.21、(1)①12;②当时,;(2)1【解题分析】
(1)①根据题意列方程求解即可;②一边长为90cm,则另一边长为40cm,列出侧面积的函数解析式,配方可得最值;(2)由EH:EF=7:2,设EF=2m、EH=7m,根据侧面积与底面积之比为9:7建立方程,可得m=x,由矩形纸板面积得出x的值.【题目详解】(1)①矩形纸板的一边长为,矩形纸板的另一边长为,(舍去)②,当时,.(2)设EF=2m,则EH=7m,则侧面积为2(7mx+2mx)=18mx,底面积为7m•2m=14m2,由题意,得18mx:14m2=9:7,∴m=x.则AD=7x+2x=9x,AB=2x+2x=4x由4x•9x=3600,且x>0,∴x=1.【题目点拨】本题主要考查二次函数的应用,根据矩形的面积公式列出面积的函数表达式或方程是解题的关键.22、(1)▱A′B′CD如图所示见解析,A′(2,2t);(2)t=3;(3)m=1.【解题分析】
(1)根据题意逐步画出图形.(2)根据三角形的面积计算方式进行作答.(3)根据平移的相关性质进行作答.【题目详解】(1)▱A′B′CD如图所示,A′(2,2t).(2)∵C′(4,t),A(2,0),∵S△OA′C=10t﹣×2×2t﹣×6×t﹣×4×t=2.∴t=3.(3)∵D(0,t),B(6,0),∴直线BD的解析式为y=﹣x+t,∴线BD沿x轴的方向平移m个单位长度的解析式为y=﹣x+(6+m),把点A(2,2t)代入得到,2t=﹣+t+,解得m=1.【题目点拨】本题主要考查了三角形的面积计算方式及平移的相关性质,熟练掌握三角形的面积计算方式及平移的相关性质是本题解题关键.23、(1)(-3,1);(0,-1)(1)P(,0)【解题分析】
(1)根据直线与C、D两点到x轴的距离均为1即可求出C,D的坐标;(1)连接CD,求出直线CD与x轴的交点即为P点.【题目详解】(1)令y=1,解得x=-3,∴点C的坐标为(-3,1)令y=-1,解得x=0,∴点D的坐标为(0,-1)(1)如图,连接CD,求出直线CD与x轴的交点即为P点.设直线CD的解析式为y=kx+b,把(-3,1),(0,1)代入得解得∴y=x-1令y=0,解得x=∴P(,0)【题目点拨】此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法确定函数关系式.24、(1),;(2)当两地路程大于520千米时,采用火车运输较好;当两地路程等于520千米时,两种运输工具一样;当两地路程小于520千米时,采用汽车运输较好.【解题分析】
(1)根据表格的信息结合等量关系即可写出关系式;(2)根据题意列出不等式或等式进行求解,根据x的取值判断费用最少的情况.【题目详解】解:(1)设运输路程为x()千米,用汽车运输所需总费用为y1元,用火车运输所需总费用为y2元.根据题意得,∴,,∴;(2)当时,即,∴;当时,即,∴;当时,即,∴.∴当两地路程大于520千米时,采用火车运输较好;当两地路程等于520千米时,两种运输工具一样;当两地路程小于520千米时,采用汽车运输较好.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 压杆稳定例题
- 【课件】部编语文三上5 铺满金色巴掌的水泥道【国家级】二
- 中班数学活动拼地毯
- 事实无人抚养儿童保障作者赵俊文第页共页
- 动脉血气分析采集护理
- 项目风险社会工作专业教学案例宝典
- 行业等级评价会议证件的样式
- 医疗器械人事任免
- 一点透视基础规律
- 中国商贸文化- 专题七 商战 -1729732085710
- 医疗机构综合监督检查表
- 湖北省盐业调查
- (完整PPT)半导体物理与器件物理课件
- ASTM B366 B366M-20 工厂制造的变形镍和镍合金配件标准规范
- 汽车维修工时收费标准二类企业
- JIS G4304-2021 热轧不锈钢板材、薄板材和带材
- 钢筋直螺纹连接课件PPT
- 小学综合实践活动《认识校园植物》优秀PPT课件
- 变压器专业词汇英文翻译
- 藏传佛教英文词汇
- 铁路杂费收费项目和标准
评论
0/150
提交评论