四川省成都实验外国语学校2024届八年级数学第二学期期末学业质量监测试题含解析_第1页
四川省成都实验外国语学校2024届八年级数学第二学期期末学业质量监测试题含解析_第2页
四川省成都实验外国语学校2024届八年级数学第二学期期末学业质量监测试题含解析_第3页
四川省成都实验外国语学校2024届八年级数学第二学期期末学业质量监测试题含解析_第4页
四川省成都实验外国语学校2024届八年级数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都实验外国语学校2024届八年级数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列事件中,属于确定事件的是()A.抛掷一枚质地均匀的骰子,正面向上的点数是6B.抛掷一枚质地均匀的骰子,正面向上的点数大于6C.抛掷一枚质地均匀的骰子,正面向上的点数小于6D.抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次2.如图,将一个含30°角的直角三角板ABC绕点A旋转,使得点B、A、C′在同一条直线上,则旋转角∠BAB′的度数是().A.90° B.120° C.150° D.160°3.在函数y=1-2x自变量xA.x≠12 B.x≥12 C.x≤12 D.4.若一个多边形从一个顶点出发的对角线共有3条,则这个多边形的内角和为()A.360° B.540° C.720° D.1080°5.下列图形中,可以由其中一个图形通过平移得到的是()A. B. C. D.6.化简9的结果是()A.9 B.-3 C.±3 D.37.下列命题是真命题的是()A.平行四边形对角线相等 B.直角三角形两锐角互补C.不等式﹣2x﹣1<0的解是x<﹣ D.多边形的外角和为360°8.“a是正数”用不等式表示为()A.a≤0B.a≥0C.a<0D.a>09.在平面直角坐标系中,点(﹣2,0)所在的位置是()A.y轴 B.x轴 C.原点 D.二象限10.函数y=3x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.在下列式子中,x可以取1和2的是()A. B. C. D.12.如图,是等腰直角三角形,是斜边,将绕点逆时针旋转后,能与重合,如果,那么的长等于()A. B. C. D.二、填空题(每题4分,共24分)13.若八个数据x1,x2,x3,……x8,的平均数为8,方差为1,增加一个数据8后所得的九个数据x1,x2,x3,…x8;8的平均数________8,方差为S2________1.(填“>”、“=”、“<”)14.如图,菱形ABCD的对角线AC、BD相交于点O,M、N分别为边AB、BC的中点,连接MN.若MN=1,BD,则菱形的周长为________.15.如图,菱形ABCD的边长为4,∠ABC=60°,且M为BC的中点,P是对角线BD上的一动点,则PM+PC的最小值为_____.16.如图,已知点A是反比例函数y在第一象限图象上的一个动点,连接OA,以OA为长,OA为宽作矩形AOCB,且点C在第四象限,随着点A的运动,点C也随之运动,但点C始终在反比例函数y的图象上,则k的值为________.17.若式子有意义,则x的取值范围为___________.18.一天,小明放学骑车从学校出发路过新华书店买了一本课外书再骑车回家,他所行驶的路程s与时间t的关系如图,则经18分钟后,小明离家还有____千米.三、解答题(共78分)19.(8分)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.20.(8分)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:BM=CM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当矩形ABCD的长和宽满足什么条件时,四边形MENF是正方形?为什么?21.(8分)如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,∠B=90°,DC=5cm.点P从点A向点D以lcm/s的速度运动,到D点停止,点Q从点C向B点以2cm/s的速度运动,到B点停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=;BQ=.(2)当t为何值时,四边形PDCQ是平行四边形?(3)当t为何值时,△QCD是直角三角形?22.(10分)解方程:=+1.23.(10分)(1)解不等式组;(2)已知,求的值.24.(10分)如图,在四边形ABCD中,AD∥BC,∠ADC=90°,BC=8,DC=6,AD=10,动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动,设运动的时间为t(秒)。(1)当点P运动t秒后,AP=____________(用含t的代数式表示);(2)若四边形ABQP为平行四边形,求运动时间t;(3)当t为何值时,△BPQ是以BQ或BP为底边的等腰三角形;25.(12分)一个四位数,记千位上和百位上的数字之和为,十位上和个位上的数字之和为,如果,那么称这个四位数为“和平数”.例如:1423,,,因为,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;26.如图,在四边形ABCD中,AD⊥CD,BC⊥CD,E为CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F。证明:(1)FC=AD;(2)AB=BC+AD。

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】A、抛掷一枚质地均匀的骰子,正面向上的点数是6是随机事件;B、抛掷一枚质地均匀的骰子,正面向上的点数大于6是不可能事件;C、抛一枚质地均匀的骰子,正面向上的点数小于6是随机事件;D、抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次是随机事件;故选:B.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【解题分析】

根据旋转角的定义,对应点与旋转中心所连线段的夹角等于旋转角,即可求解.【题目详解】旋转角是∠BAB′=180°-30°=150°.故选C.【题目点拨】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.3、C【解题分析】

根据被开方式大于或等于零解答即可.【题目详解】由题意得1-2x≥0,∴x≤12故选C.【题目点拨】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.4、C【解题分析】

先得出这个多边形的边数,再根据多边形的内角和公式即可得.【题目详解】从一个顶点出发的对角线共有3条这个多边形是一个六边形则这个多边形的内角和为故选:C.【题目点拨】本题考查了多边形的内角和公式,正确求出多边形的边数是解题关键.5、B【解题分析】

根据平移的定义直接判断即可.【题目详解】解:由其中一个图形平移得到整个图形的是B,

故选:B.【题目点拨】此题主要考查了图形的平移,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.6、D【解题分析】

根据算术平方根的性质,可得答案.【题目详解】解:9=3,故D故选:D.【题目点拨】本题考查了算术平方根的计算,熟练掌握算术平方根的性质是解题关键.7、D【解题分析】

根据平行四边形的性质、直角三角形的性质、一元一次不等式的解法、多边形的外角和定理判断即可.【题目详解】平行四边形对角线不一定相等,A是假命题;直角三角形两锐角互余,B是假命题;不等式-2x-1<0的解是x>-,C是假命题;多边形的外角和为360°,D是真命题;故选D.【题目点拨】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、D【解题分析】

正数即“>0”可得答案.【题目详解】“a是正数”用不等式表示为a>0,故选D.【题目点拨】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.9、B【解题分析】

由于点(﹣2,0)的纵坐标为0,则可判断点点(﹣2,0)在x轴上.【题目详解】解:点(-2,0)在x轴上.

故选:B.【题目点拨】本题考查了点的坐标:记住各象限内的点的坐标特征和坐标轴上点的坐标特点.10、B【解题分析】试题分析:根据一次函数的性质即可得到结果。,图象经过一、二、四象限,不经过第二象限,故选B.考点:本题考查的是一次函数的性质点评:解答本题的关键是熟练掌握一次函数的性质:当时,图象经过一、二、三象限;当时,图象经过一、三、四象限;当时,图象经过一、二、四象限;当时,图象经过二、三、四象限.11、B【解题分析】

根据分式和二次根式有意义的条件即可求出答.【题目详解】解:A.x﹣1≠0,所以x≠1,故A不可以取1B.x﹣1≥0,所以x≥1,故B可以取1和2C.x﹣2≥0,所以x≥2,故C不可以取1D.x﹣2≠0,所以x≠2,故D不可以取2故选:B.【题目点拨】本题考查的是分式和二次根式有意义的条件,熟练掌握二者是解题的关键.12、A【解题分析】

解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3,根据勾股定理得:,故选A.二、填空题(每题4分,共24分)13、=<【解题分析】

根据八个数据x1,x2,x3,……x8,的平均数为8,方差为1,利用平均数和方差的计算方法,可求出,,再分别求出9个数的平均数和方差,然后比较大小就可得出结果【题目详解】解:∵八个数据x1,x2,x3,……x8,的平均数为8,∴∴,∵增加一个数8后,九个数据x1,x2,x3,8…x8的平均数为:;∵八个数据x1,x2,x3,……x8,的方差为1,∴∴∵增加一个数8后,九个数据x1,x2,x3,8…x8的方差为:;故答案为:=,<【题目点拨】本题考查方差,算术平均数等知识,解题的关键是熟练掌握算术平均数与方差的求法,属于中考常考题型.14、8【解题分析】

由三角形中位线的性质可求出AC的长,根据菱形的性质可得OA、OB的长,利用勾股定理可求出AB的长,即可求出菱形的周长.【题目详解】∵M、N分别为边AB、BC的中点,MN=1,∴AC=2MN=2,∵AC、BD是菱形ABCD的对角线,BD=2,∴OA=AC=1,OB=BD=,∴AB==2,∴菱形的周长=4AB=8,故答案为:8【题目点拨】本题考查了菱形的性质、三角形中位线的性质及勾股定理,菱形的四条边相等,对角线互相垂直平分且平分对角;三角形中位线平行于第三边且等于第三边的一半.熟练掌握相关性质是解题关键.15、2【解题分析】

连接AC,∵四边形ABCD为菱形,∴AB=BC=4,A、C关于BD对称,∴连AM交BD于P,则PM+PC=PM+AP=AM,根据两点之间线段最短,AM的长即为PM+PC的最小值.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,又∵BM=CM,∴AM⊥BC,∴AM=,故答案为:2.【题目点拨】本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,轴对称中的最短路径问题,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.16、−3【解题分析】

设A(a,b),则ab=,分别过A,C作AE⊥x轴于E,CF⊥x轴于F,根据相似三角形的判定证得△AOE∽△COF,由相似三角形的性质得到OF=,CF=,则k=-OF•CF=-3.【题目详解】设A(a,b),

∴OE=a,AE=b,

∵在反比例函数y=图象上,

∴ab=,

分别过A,C作AE⊥x轴于E,CF⊥x轴于F,

∵矩形AOCB,

∴∠AOE+∠COF=90°,

∴∠OAE=∠COF=90°−∠AOE,

∴△AOE∽△OCF,

∵OC=OA,

∴===,

∴OF=AE=b,CF=OE=a,

∵C在反比例函数y=的图象上,且点C在第四象限,

∴k=−OF⋅CF=−b⋅a=−3ab=−3.【题目点拨】本题考查反比例函数图象上点的坐标特征和矩形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和矩形的性质.17、x≥5【解题分析】

根据二次根式的性质,即可求解.【题目详解】因为式子有意义,可得:x-5≥1,解得:x≥5,故选A.【题目点拨】主要考查了二次根式的意义.二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于1.18、0.1【解题分析】

根据待定系数法确定函数关系式,进而解答即可.【题目详解】解:设当15≤t≤20时,s关于t的函数关系式为s=kt+b,把(15,2)(20,3.5)代入s=kt+b,可得:,解得:,所以当15≤t≤20时,s关于t的函数关系式为s=0.3t﹣2.5,把t=18代入s=0.3t﹣2.5中,可得:s=2.9,3.5﹣2.9=0.1,答:当t=18时,小明离家路程还有0.1千米.故答案为0.1.【题目点拨】本题考查了一次函数的图象的性质的运用,行程问题的数量关系速度=路程÷时间的运用,解答时理解清楚函数图象的数据的含义是关键.三、解答题(共78分)19、甲车的速度是60千米/时,乙车的速度是90千米/时.【解题分析】

根据题意,设出甲、乙的速度,然后根据题目中两车相遇时时间相同,列出方程,解方程即可.【题目详解】设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,,解得,x=60,经检验,x=60是原方程的解.则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.20、(1)见解析;(2)平行四边形MENF是菱形,见解析;(3)即当AD:AB=2:1时,四边形MENF是正方形,理由见解析.【解题分析】

(1)证明△ABM≌△DCM即可求解(2)先证明四边形MENF是平行四边形,再根据(1)中的△ABM≌△DCM可得BM=CM,即ME=MF,即可求证平行四边形MENF是菱形(3)当AD:AB=2:1时,易得∠ABM=∠AMB=45°,∠EMF=180°﹣45°﹣45°=90°,又四边形MENF是菱形,故可证菱形MENF是正方形,【题目详解】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵M为AD中点,∴AM=DM,在△ABM和△DCM中,∴△ABM≌△DCM(SAS),∴BM=CM;(2)四边形MENF是菱形.证明:∵N、E、F分别是BC、BM、CM的中点,∴NE∥CM,NE=CM,∵MF=CM,∴NE=FM,∵NE∥FM,∴四边形MENF是平行四边形,由(1)知△ABM≌△DCM,∴BM=CM,∵E、F分别是BM、CM的中点,∴ME=MF,∴平行四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM,∵AD:AB=2:1,∴AM=AB,∵∠A=90°∴∠ABM=∠AMB=45°,同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°,∵四边形MENF是菱形,∴菱形MENF是正方形,即当AD:AB=2:1时,四边形MENF是正方形.【题目点拨】此题主要考查平行四边形、菱形以及正方形的判定条件,其中涉及全等三角形21、(1)tcm,(15﹣2t)cm;(2)t=3秒;(3)当t为秒或秒时,△QCD是直角三角形.【解题分析】

(1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,BQ的长(2)当AP=CQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;(3)当∠CDQ=90°或∠CQD=90°△QCD是直角三角形,分情况讨论t的一元一次方程方程,解方程求出符合题意的t值即可;【题目详解】(1)由运动知,AP=t,CQ=2t,∴BQ=BC﹣CQ=15﹣2t,故答案为tcm,(15﹣2t)cm;(2)由运动知,AP=t,CQ=2t,∴DP=AD﹣AP=12﹣t,∵四边形PDCQ是平行四边形,∴PD=CQ,∴12﹣t=2t,∴t=3秒;(3)∵△QCD是直角三角形,∴∠CDQ=90°或∠CQD=90°,①当∠CQD=90°时,BQ=AD=12,∴15﹣2t=12,∴t=秒,②当∠CDQ=90°时,如图,过点D作DE⊥BC于E,∴四边形ABED是矩形,∴BE=AD=12,∴CE=BC﹣BE=3,∵∠CED=∠CDQ=90°,∠C=∠C,∴△CDE∽△CQD,∴,∴,∴t=秒,即:当t为秒或秒时,△QCD是直角三角形.【题目点拨】此题考查平行四边形的判定和直角三角形的判定,解题关键是掌握性质并且灵活运用求解22、.

【解题分析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:,,.经检验:是原方程的解,所以原方程的解是.点睛:此题考查了解分式方程,熟练掌握运算法则是解本题的关键.23、(1)x<-10;(2)6.【解题分析】

(1)先分别解两个不等式得到x<-1和x<-10,然后根据小小取较小确定不等式组的解集;(2)将两边同时平方,然后利用完全平方公式可求得答案.【题目详解】(1)解不等式①得,x<-1,解不等式②得,x<-10,所以,不等式组的解集为:x<-10;(2)∵∴∴∴【题目点拨】本题考查利用完全平方公式化简求值、解一元一次不等式组,解答本题的关键是明确利用完全平方公式化简求值的方法和解不等式组的方法.24、(1)10-2t;(2)t=2(3)t=74或t=8【解题分析】

(1)根据AP=AD-DP即可写出;(2)当四边形ABQP为平行四边形时,AP=BQ,即可列方程进行求解;(3)分两种情况讨论:①若PQ=BQ,在Rt△PQE中,由PQ2=PE2+EQ2,PQ=BQ,将各数据代入即可求解;②若PB=PQ,则BQ=2EQ,列方程即可求解.【题目详解】(1)∵动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,∴AP=AD-DP=10-2t,故填:10-2t;(2)∵四边形ABQP为平行四边形时,∴AP=BQ,∵BQ=BC-CQ=8-t,∴10-2t=8-t,解得t=2,(3)如图,过点P作PE⊥BC于E,①当∠BQP为顶角时,PQ=BQ,BQ=8-t,PE=CD=6,EQ=CE-CQ=2t-t=t,在Rt△PQM中,由PQ2=PE2+EQ2,又PQ=BQ,∴(8-t)2=62+t2,解得t=7②当∠BPQ为顶角时,则BP=PQ由BQ=2EQ,即8-t=2t解得t=8故t=74或t=83【题目点拨】此题主要考查四边形的动点问题,解题的关键是熟知等腰三角形的性质及勾股定理列出方程进行求解.25、(1)1001,9999;(2)见详解;(3)2754和1【解题分析】

(1)根据和平数的定义,即可得到结论;(2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),于是得到=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论