2024届山东省滨州市邹平市部分学校数学八下期末教学质量检测模拟试题含解析_第1页
2024届山东省滨州市邹平市部分学校数学八下期末教学质量检测模拟试题含解析_第2页
2024届山东省滨州市邹平市部分学校数学八下期末教学质量检测模拟试题含解析_第3页
2024届山东省滨州市邹平市部分学校数学八下期末教学质量检测模拟试题含解析_第4页
2024届山东省滨州市邹平市部分学校数学八下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省滨州市邹平市部分学校数学八下期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度的一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连接AC,BC,AD,BD,根据她的作图方法可知四边形ADBC一定是()A.菱形 B.矩形 C.正方形 D.梯形2.直角三角形的两条直角边长分别为a和b,斜边长为c,已知c=13,b=5,则a=()A.1 B.5 C.12 D.253.在平面直角坐标系中,点P(-2,x2A.第一象限 B.第二象限 C.第三象限 D.第四象限4.某校七年级体操比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各班代表队得分的中位数和众数分别是()A.7,7 B.7,8 C.8,7 D.8,85.在数轴上与原点的距离小于8的点对应的x满足()A.x<8 B.x>8 C.x<-8或x>8 D.-8<x<86.如图,、分别是平行四边形的边、上的点,且,分别交、于点、.下列结论:①四边形是平行四边形;②;③;④,其中正确的个数是()A.1个 B.2个C.3个 D.4个7.函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象可能是()A. B. C. D.8.如图,一次函数y1=x-1与反比例函数y2=的图象交于点A(2,1)、B(-1,-2),则使y1y2的x的取值范围是().A.x2 B.x2或1x0C.1x0 D.x2或x19.下列各式计算正确的是()A.(2a2)•(3a3)=6a6 B.6a2b÷2a=3bC.3a2﹣2a2=a2 D.+=10.无理数+1在两个整数之间,下列结论正确的是()A.2-3之间 B.3-4之间 C.4-5之间 D.5-6之间二、填空题(每小题3分,共24分)11.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是_____.12.已知y与x+1成正比例,且x=1时,y=2.则x=-1时,y的值是______.13.一组数据-3,x,-2,3,1,6的中位数是1,则其方差为________14.如图,在正方形的内侧,作等边,则的度数是________.15.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为_____cm.16.八个边长为1的正方形如图所示的位置摆放在平面直角坐标系中,经过原点的直线l将这八个正方形分成面积相等的两部分,则这条直线的解析式是_____.17.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.18.将直线向右平移个单位,所得的直线的与坐标轴所围成的面积是_______.三、解答题(共66分)19.(10分)解答题.某校学生积极为地震灾区捐款奉献爱心.小颖随机抽查其中30名学生的捐款情况如下:(单位:元)2、5、35、8、5、10、15、20、15、5、45、10、2、8、20、30、40、10、15、15、30、15、8、25、25、30、15、8、10、1.(1)这30名学生捐款的最大值、最小值、极差、平均数各是多少?(2)将30名学生捐款额分成下面5组,请你完成频数统计表:(3)根据上表,作出频数分布直方图.20.(6分)如图,点A,B,C,D依次在同一条直线上,点E,F分别在直线AD的两侧,已知BE//CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形.(2)若AD=10,EC=3,∠EBD=60°,当四边形BFCE是菱形时,求AB的长.21.(6分)如图,在边长为的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.22.(8分)潮州市某学校为了改善办学条件,购置一批电子白板和台式电脑合共24台.经招投标,一台电子白板每台9000元,一台台式电脑每台3000元,设学校购买电子白板和台式电脑总费用为元,购买了台电子白板,并且台式电脑的台数不超过电子白板台数的3倍.(1)请求出与的函数解析式,并直接写出的取值范围(2)请问当购买多少台电子白板时,学校购置电子白板和台式电脑的总费用最少,最少多少钱?23.(8分)如图,于点,于点,与相交于点,连接线段,恰好平分.求证:.24.(8分)探究:如图1,在△ABC中,AB=AC,CF为AB边上的高,点P为BC边上任意一点,PD⊥AB,PE⊥AC,垂足分别为点D,E.求证:PD+PE=CF.嘉嘉的证明思路:连结AP,借助△ABP与△ACP的面积和等于△ABC的面积来证明结论.淇淇的证明思路:过点P作PG⊥CF于G,可证得PD=GF,PE=CG,则PD+PE=CF.迁移:请参考嘉嘉或淇淇的证明思路,完成下面的问题:(1)如图1.当点P在BC延长线上时,其余条件不变,上面的结论还成立吗?若不成立,又存在怎样的关系?请说明理由;(1)当点P在CB延长线上时,其余条件不变,请直接写出线段PD,PE和CF之间的数量关系.运用:如图3,将矩形ABCD沿EF折叠,使点D落在点B处,点C落在点C′处.若点P为折痕EF上任一点,PG⊥BE于G,PH⊥BC于H,若AD=18,CF=5,直接写出PG+PH的值.25.(10分)如图,将平行四边形的对角线向两个方向延长,分别至点和点,且使.求证:四边形是平行四边形.26.(10分)如图,在△ABC中,D、E、F分别为边AB、BC、CA的中点.(1)求证:四边形DECF是平行四边形.(2)当AC、BC满足何条件时,四边形DECF为菱形?

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形.【题目详解】解:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC一定是菱形,故选A.【题目点拨】此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.2、C【解题分析】

根据勾股定理计算即可.【题目详解】由勾股定理得,a=,故选C.【题目点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.3、B【解题分析】

∵-20,x2+10,∴点P(-2,x2+1)故选B.4、A【解题分析】

根据众数与中位数的定义分别进行解答即可.【题目详解】由于共有7个数据,则中位数为第4个数据,即中位数为7,

这组数据中出现次数最多的是7分,一共出现了3次,则众数为7,

故选:A.【题目点拨】考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.5、D【解题分析】

解:数轴上对应x的点到原点的距离可表示为|x|.由题意可知解得故选D.6、D【解题分析】

根据平行四边形的性质即可判断.【题目详解】∵四边形ABCD为平行四边形,∴AD∥BC,又,∴四边形是平行四边形①正确;∴AE=CF,∠EAG=∠FCH,又∠AGE=∠BGC=∠CHF,∴,②正确;∴EG=FH,故BE-EG=DF-FH,故,③正确;∵,∴,故④正确故选D.【题目点拨】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质与全等三角形的判定与性质.7、D【解题分析】【分析】分两种情况分析:当k>0或当k<0时.【题目详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.故选:D【题目点拨】本题考核知识点:一次函数和反比例函数的图象.解题关键点:理解两种函数的性质.8、B【解题分析】

根据交点坐标及图象的高低即可判断取值范围.【题目详解】要使,则一次函数的图象要高于反比例函数的图象,∵两图象交于点A(2,1)、B(-1,-2),∴由图象可得:当或时,一次函数的图象高于反比例函数的图象,∴使的x的取值范围是:或.故选:B.【题目点拨】本题考查一次函数与反比例函数的图象,要掌握由图象解不等式的方法.9、C【解题分析】

直接利用二次根式的加减运算法则以及同底数幂的乘除运算法则和合并同类项运算法则分别判断得出答案.【题目详解】A、(2a2)•(3a3)=6a5,故此选项错误;B、6a2b÷2a=3ab,故此选项错误;C、3a2﹣2a2=a2,正确;D、+,无法计算,故此选项错误;故选:C.【题目点拨】此题主要考查了二次根式的加减运算以及同底数幂的乘除运算和合并同类项运算,正确掌握相关运算法则是解题关键.10、B【解题分析】

先找出和相邻的两个整数,然后再求+1在哪两个整数之间【题目详解】解:∵22=1,32=9,∴2<<3;∴3<+1<1.故选:B.【题目点拨】此题主要考查了无理数的估算能力,需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.二、填空题(每小题3分,共24分)11、x=1,y=1【解题分析】

由图可知:两个一次函数的交点坐标为(1,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【题目详解】解:函数y=ax+b和y=kx的图象交于点P(1,1)即x=1,y=1同时满足两个一次函数的解析式.所以,方程组的解是,故答案为x=1,y=1.【题目点拨】本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.12、2【解题分析】

设y=k(x+1),把x=1,y=2代入,求的k,确定x,y的关系式,然后把x=-1,代入解析式求对应的函数值即可.【题目详解】解:∵y与x+1成正比例,∴设y=k(x+1),∵x=1时,y=2,∴2=k×2,即k=1,所以y=x+1.则当x=-1时,y=-1+1=2.故答案为2.【题目点拨】本题考查了正比例函数关系式为:y=kx(k≠2)),只需一组对应量就可确定解析式.也考查了给定自变量会求对应的函数值.13、9【解题分析】

根据中位数的定义,首先确定x的值,再计算方差.【题目详解】解:首先根据题意将所以数字从小到达排列,可得-3,-2,1,3,6因为这五个数的中位数为1再增加x后要使中位数为1,则因此可得x=1所以平均数为:所以方差为:故答案为9.【题目点拨】本题主要考查根据中位数求未知数和方差的计算,关键在于根据题意计算未知数.14、【解题分析】

由正方形和等边三角形的性质得出∠ABE=30°,AB=BE,由等腰三角形的性质和三角形内角和定理即可求出∠AEB的度数.【题目详解】∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵△EBC是等边三角形,∴BE=BC,∠EBC=60°,∴∠ABE=90°−60°=30°,AB=BE,∴∠AEB=∠BAE=(180°−30°)=1°;故答案为:1.【题目点拨】本题考查了正方形的性质、等边三角形的性质、等腰三角形的性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质,并能进行推理论证与计算是解决问题的关键.15、4.1【解题分析】

直接利用勾股定理得出菱形的边长,再利用菱形的面积求法得出答案.【题目详解】解:∵菱形的两条对角线分别为6cm和1cm,∴菱形的边长为:=5(cm),设菱形的高为:xcm,则5x=×6×1,解得:x=4.1.故答案为:4.1.【题目点拨】此题主要考查了菱形的性质,正确得出菱形的边长是解题关键.16、y=x【解题分析】

设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x轴于点C,易知OB=1,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.【题目详解】设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x轴于点C,如图所示.∵正方形的边长为1,∴OB=1.∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两部分面积分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,∴点A的坐标为(,1).设直线l的解析式为y=kx,∵点A(,1)在直线l上,∴1=k,解得:k=,∴直线l解析式为y=x.故答案为:y=x.【题目点拨】本题考查了待定系数法求一次函数解析式、正方形的性质以及三角形的面积,利用三角形的面积公式和已知条件求出A的坐标是解题的关键.17、75【解题分析】因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案为75.18、【解题分析】

先求出平移后的直线的解析式,再求出平移后的直线与两坐标轴的交点即可求得结果.【题目详解】解:直线向右平移个单位后的解析式为,令x=0,则y=-9,令y=0,则3x-9=0,解得x=3,所以直线与x轴、y轴的交点坐标分别为(3,0)、(0,-9),所以直线与坐标轴所围成的三角形面积是.故答案为:.【题目点拨】本题考查了一次函数的平移和一次函数与坐标轴的交点问题,一次函数的平移遵循“上加下减,左加右减”的规律,正确求出平移后一次函数的解析式是解此题的关键.三、解答题(共66分)19、(1)最大值为1,最小值为2,极差为48,平均数为17.7元.(2)填表见解析;(3)补图见解析.【解题分析】分析:(1)根据给出的数据以及极差、平均数的计算方法直接计算即可解答.

(2)分别找出各组的人数填表即可解答.

(3)根据频数分布表画出频数分布直方图即可解答.详解:(1)这30名学生捐款的最大值为1,最小值为2,极差为1﹣2=48,平均数为(2+5+35+8+5+10+15+20+15+5+45+10+2+8+20+30+40+10+15+15+30+15+8+25+25+30+15+8+10+1)÷30=17.7元.(2)填表如下:.(3)画图如下:点睛:本题主要考查极差、平均数的定义以及画频数分布直方图的能力,正确画图是关键.20、(1)证明见解析;(2)AB=.【解题分析】

(1)根据AAS证明△ABE≌△DCF,由全等三角形对应边相等得到BE=CF,根据一组对边平行且相等的四边形是平行四边形即可得到结论;(2)利用全等三角形的性质证明AB=CD即可得出结论.【题目详解】(1)∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD.∵∠A=∠D,AE=DF,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)∵四边形BFCE是菱形,∠EBD=60°,∴△CBE是等边三角形,∴BC=EC=1.∵AD=10,AB=DC,∴AB(10﹣1).【题目点拨】本题考查了菱形的性质,全等三角形的判定和性质,平行四边形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1)AC=,QD=;(2)是菱形,理由见解析;(3)DP2+EF2=4QD2,理由见解析;(4)垂直且相等,理由见解析.【解题分析】

(1)利用勾股定理求出AC,再证明△FDQ≌△FPA得到QD=AP,结合CD=CP求出结果;(2)先证明DE∥PF,结合EP∥DF得到四边形DFPE是平行四边形,再由EF⊥DP得到菱形;(3)根据菱形的性质得到2DG=DP,2GF=EF,再证明QD=DF,最后利用勾股定理证明线段关系;(4)证明△ADE≌BAP,得到AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,利用∠EAD=∠ABP,得到∠PHA=90°,即可判定关系.【题目详解】解:(1)AC=,∵CF平分∠BCD,FD⊥CD,FP⊥AC,∴FD=FP,又∠FDQ=∠FPA,∠DFQ=∠PFA,∴△FDQ≌△FPA(ASA),∴QD=AP,∵点P在正方形ABCD对角线AC上,∴CD=CP=a,∴QD=AP=AC-PC=;(2)∵FD=FP,CD=CP,∴CF垂直平分DP,即DP⊥CF,∴ED=EP,则∠EDP=∠EPD,∵FD=FP,∴∠FDP=∠FPD,而EP∥DF,∴∠EPD=∠FDP,∴∠FPD=∠EPD,∴∠EDP=∠FPD,∴DE∥PF,而EP∥DF,∴四边形DFPE是平行四边形,∵EF⊥DP,∴四边形DFPE是菱形;(3)DP2+EF2=4QD2,理由是:∵四边形DFPE是菱形,设DP与EF交于点G,∴2DG=DP,2GF=EF,∵∠ACD=45°,FP⊥AC,∴△PCQ为等腰直角三角形,∴∠Q=45°,可得△QDF为等腰直角三角形,∴QD=DF,在△DGF中,DG2+FG2=DF2,∴有(DP)2+(EF)2=QD2,整理得:DP2+EF2=4QD2;(4)∵∠DFQ=45°,DE∥FP,∴∠EDF=45°,又∵DE=DF=DQ=AP=,AD=AB,∴△ADE≌BAP(SAS),∴AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,∵∠HPA=∠PAB+∠PBA=∠PAB+∠DAE,∠PAB+∠DAE+∠HAP=90°,∴∠HPA+∠HAP=90°,∴∠PHA=90°,即BP⊥AE,综上:BP与AE的关系是:垂直且相等.【题目点拨】本题考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,菱形的判定,勾股定理,知识点较多,解题时应当注意各个小问之间的关系,找到能够利用的结论和条件.22、(1)(,且为整数);(2)当购买电子白板6台,台式电脑18台学校总费用最少钱,最少是108000元.【解题分析】

(1)根据题意“电子白板和台式电脑合共24台,一台电子白板每台9000元,一台台式电脑每台3000元”即可列出与的函数解析式,又根据“台式电脑的台数不超过电子白板台数的3倍”求出x的取值范围;(2)根据一次函数的性质即可得随的增大而增大,所以当时,有最小值.【题目详解】解:(1)依题意可得:,∵台式电脑的台数不超过电子白板台数的3倍,∴24-x≤3xx≥6,则x的取值范围为,且为整数;(2)∵,,∴随的增大而增大,∴当时,有最小值.(元)答:当购买电子白板6台,台式电脑18台学校总费用最少钱,最少是108000元.【题目点拨】本题考查了一次函数的性质和应用,解题的关键是读懂题意,找出之间的数量关系列出一次函数,此题难度不大.23、见解析.【解题分析】

由角平分线的性质得出OE=OD,证得△BOE≌△COD,即可得出结论.【题目详解】∵于点,于点,恰好平分∴,∵∴∴【题目点拨】本题考查了角平分线的性质、全等三角形的判定与性质等知识,熟练掌握角平分线的性质、证明三角形全等是解题的关键.24、(1)不成立,CF=PD-PE,理由见解析;(1)CF=PE-PD理由见解析;运用:PG+PH的值为11.【解题分析】

(1)由三角形的面积和差关系可求解;(1)由三角形的面积和差关系可求解;(3)易证BE=BF,过点E作EQ⊥BF,垂足为Q,利用探究中的结论可得PG+PH=EQ,易证EQ=AB,BF=BE=DE=3,只需求出AB即可.【题目详解】解:(1)不成立,CF=PD-PE理由如下:连接AP,如图,∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ABP-S△ACP,∴AB•CF=AB•PD-AC•PE.∵AB=AC,∴CF=PD-PE.(1)CF=PE-PD理由如下:如图,∵S△ABC=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论