2024届黑龙江省鹤岗市绥滨县数学八下期末学业水平测试试题含解析_第1页
2024届黑龙江省鹤岗市绥滨县数学八下期末学业水平测试试题含解析_第2页
2024届黑龙江省鹤岗市绥滨县数学八下期末学业水平测试试题含解析_第3页
2024届黑龙江省鹤岗市绥滨县数学八下期末学业水平测试试题含解析_第4页
2024届黑龙江省鹤岗市绥滨县数学八下期末学业水平测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省鹤岗市绥滨县数学八下期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若A(,)、B(,)是一次函数y=(a-1)x+2图象上的不同的两个点,当>时,<,则a的取值范围是()A.a>0 B.a<0 C.a>1 D.a<12.函数y=2x﹣5的图象经过()A.第一、三、四象限 B.第一、二、四象限C.第二、三、四象限 D.第一、二、三象限3.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.3,5,6 B.2,3,5 C.5,6,7 D.6,8,104.如果把分式2xx+y中的x和y都扩大A.不变 B.扩大3倍 C.缩小3倍 D.无法确定5.如图,的对角线与相交于点,,垂足为,,,,则的长为()A. B. C. D.6.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.7.在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为()A.正五边形B.正六边形C.等腰梯形D.平行四边形8.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,则点C的纵坐标y与x的函数解析式是()A.y=x B.y=1﹣x C.y=x+1 D.y=x﹣19.下列图形中,是中心对称但不是轴对称图形的有()A.1个 B.2个 C.3个 D.4个10.有m支球队参加篮球比赛,共比赛了21场,每两队之间都比赛一场,则下列方程中符合题意的是()A.12m(m-1)=21C.m(m-1)=21 D.m(m+1)=2111.如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面亮到现点B,则它爬行的最短路程是()A. B.2 C.3 D.512.若关于的分式方程有增根,则的值是()A.或 B.C. D.二、填空题(每题4分,共24分)13.二次函数的函数值自变量之间的部分对应值如下表:…014……4…此函数图象的对称轴为_____14.如图,四边形是正方形,点在上,绕点顺时针旋转后能够与重合,若,,试求的长是__________.15.写出一个二次项系数为1,解为1与﹣3的一元二次方程:____________.16.如图,已知,点是等腰斜边上的一动点,以为一边向右下方作正方形,当动点由点运动到点时,则动点运动的路径长为______.17.如果不等式组的解集是,那么的取值范围是______.18.如图,函数与函数的图象相交于A、B两点,轴于点C,轴于点D,则四边形ADBC的面积为___________.三、解答题(共78分)19.(8分)因式分解:(1)m2n﹣2mn+n;(2)x2+3x(x﹣3)﹣920.(8分)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为,,.若,则正方形EFGH的面积为_______.21.(8分)已知:如图,在四边形ABCD中,AB=CD,AD=BC,点E在CD上,连接AE并延长,交BC的延长线于F.(1)求证:△ADE∽△FCE;(2)若AB=4,AD=6,CF=2,求DE的长.22.(10分)已知一次函数与一次函数的图象的交点坐标为,求这两个一次函数的解析式及两直线与轴围成的三角形的面积.23.(10分)如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距_____千米;(2)走了一段路后,自行车发生故障进行修理,所用的时间是____小时;(3)B出发后_____小时与A相遇;(4)求出A行走的路程S与时间t的函数关系式;(写出计算过程)(5)请通过计算说明:若B的自行车不发生故障,保持出发时的速度前进,何时与A相遇.24.(10分)在平行四边形ABCD中,对角线AC、BD交于点O,点E、F在AC上,且AE=CF,求证:DE=BF.25.(12分)(1)如图1,将矩形折叠,使落在对角线上,折痕为,点落在点处,若,则º;(2)小丽手中有一张矩形纸片,,.她准备按如下两种方式进行折叠:①如图2,点在这张矩形纸片的边上,将纸片折叠,使点落在边上的点处,折痕为,若,求的长;②如图3,点在这张矩形纸片的边上,将纸片折叠,使落在射线上,折痕为,点,分别落在,处,若,求的长.26.如图,从点A(0,4)出发的一束光,经x轴反射,过点C(6,4),求这束光从点A到点C所经过的路径长度.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

根据一次函数的图象y=(a-1)x+2,当a-1<0时,y随着x的增大而减小分析即可.【题目详解】解:因为A(x1,y1)、B(x2,y2)是一次函数y=(a-1)x+2图象上的不同的两个点,当x1>x2时,y1<y2,

可得:a-1<0,

解得:a<1.

故选D.【题目点拨】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b的性质:当k<0时,y随着x的增大而减小;k>0时,y随着x的增大而增大;k=0时,y的值=b,与x没关系.2、A【解题分析】

先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【题目详解】∵一次函数y=2x-5中,k=2>0,

∴此函数图象经过一、三象限,

∵b=-5<0,

∴此函数图象与y轴负半轴相交,

∴此一次函数的图象经过一、三、四象限,不经过第二象限.

故选A.【题目点拨】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.3、D【解题分析】

判断是否为直角三角形,只要验证两小边的平方和是否等于最长边的平方即可.【题目详解】A.32+52=34≠62,故不能组成直角三角形,错误;B.22+32≠52,故不能组成直角三角形,错误;C.52+62≠72,故不能组成直角三角形,错误;D.62+82=100=102,故能组成直角三角形,正确.故选D.【题目点拨】本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4、A【解题分析】

根据题意得出算式,再进行化简,即可得出选项.【题目详解】解:把分式2xx+y中的x和y都扩大3倍为2·3x3x+3【题目点拨】本题考查分式的基本性质,能熟记分式的基本性质的内容是解此题的关键.5、D【解题分析】

∵四边形ABCD是平行四边形,,.又,在中,,故选D.【题目点拨】错因分析:中等题。选错的原因是:1.对平行四边形的性质没有掌握;2.不能利用勾股定理的逆定理得出;3.未能利用的两种计算方法得到线段间的关系.6、B【解题分析】∵y轴表示当天爷爷离家的距离,X轴表示时间又∵爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∴刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∴选项B中的图形满足条件.故选B.7、D【解题分析】A.正五边形是轴对称图形,但不是中心对称图形,故A错;B.正六边形既是轴对称图形,又是中心对称图形,故B错;C.等腰梯形是轴对称图形,但不是中心对称图形,故C错;D.平行四边形是中心对称图形,但不是轴对称图形,故D正确;故选D.8、C【解题分析】

过点C作CE⊥y轴于点E,只要证明△CEA≌△AOB(AAS),即可解决问题;【题目详解】解:过点C作CE⊥y轴于点E.∵∠CEA=∠CAB=∠AOB=90°,∴∠EAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠EAC=∠ABO,∵AC=AB,∴△CEA≌△AOB(AAS),∴EA=OB=x,CE=OA=1,∵C的纵坐标为y,OE=OA+AD=1+x,∴y=x+1.故选:C.【题目点拨】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9、B【解题分析】

根据轴对称图形与中心对称图形的概念求解.【题目详解】解:第1个图形,是轴对称图形,不是中心对称图形,故错误;第2个图形,不是轴对称图形,是中心对称图形,故正确;第3个图形,不是轴对称图形,是中心对称图形,故正确;第4个图形,是轴对称图形,也是中心对称图形,故错误;故选B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、A【解题分析】

设这次有m队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:12m(m-1)场.根据题意可知:此次比赛的总场数【题目详解】设这次有m队参加比赛,则此次比赛的总场数为12根据题意列出方程得:12故选:A.【题目点拨】此题考查由实际问题抽象出一元二次方程,解题关键在于根据题意列出方程.11、C【解题分析】

将长方形的盒子按不同方式展开,得到不同的矩形,求出不同矩形的对角线,最短者即为正确答案.【题目详解】解:将长方形的盒子按不同方式展开,得到不同的矩形,对角线长分别为:∴从点A出发沿着长方体的表面爬行到达点B的最短路程是3.故选C.【题目点拨】本题主要考查了两点之间线段最短,解答时根据实际情况进行分类讨论,灵活运用勾股定理是解题的关键.12、C【解题分析】

增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,由最简公分母x-4=0,得到x=4,然后代入化为整式方程的方程,满足即可.【题目详解】解:方程两边都乘x-4,得∵原方程有增根,∴最简公分母x-4=0,解得x=4,当x=4时,,解得:故选:C.【题目点拨】本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行:①让最简公分母为0确定可能的增根;②化分式方程为整式方程;③把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.二、填空题(每题4分,共24分)13、x=2.【解题分析】

根据抛物线的对称性,x=0、x=4时的函数值相等,然后列式计算即可得解.【题目详解】∵x=0、x=4时的函数值都是−1,∴此函数图象的对称轴为直线x==2,即直线x=2.故答案为:直线x=2.【题目点拨】此题考查二次函数的性质,解题关键在于利用其对称性求解.14、.【解题分析】

由正方形的性质得出AB=AD=3,∠ABC=∠D=∠BAD=90°,由勾股定理求出AP,再由旋转的性质得出△ADP≌△ABP′,得出AP′=AP=,∠BAP′=∠DAP,证出△PAP′是等腰直角三角形,得出PP′=AP,即可得出结果.【题目详解】解:∵四边形ABCD是正方形,∴AB=AD=3,DP=1,∠ABC=∠D=∠BAD=90°,∴AP=,∵△ADP旋转后能够与△ABP′重合,∴△ADP≌△ABP′,∴AP′=AP=,∠BAP′=∠DAP,∴∠PAP′=∠BAD=90°,∴△PAP′是等腰直角三角形,∴PP′=AP=;故答案为:.【题目点拨】本题考查了旋转的性质、勾股定理、全等三角形的性质、等腰直角三角形的性质;熟练掌握正方形和旋转的性质是解决问题的关键.15、x2+2x﹣3=0.【解题分析】

用因式分解的形式写出方程,再化为一般形式即可【题目详解】解:(x-1)(x+3)=0,

即x2+2x-3=0,

故答案为:x2+2x-3=0【题目点拨】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.16、【解题分析】

连接,根据题意先证出,然后得出,所以点运动的路径长度即为点从到的运动路径,继而得出结论【题目详解】连接,∵,是等腰直角三角形,∴,∠ABC=90°∵四边形是正方形∴BD=BF,∠DBF=∠ABC=90°,∴∠ABD=∠CBF,在△DAP与△BAP中∴,∴,点运动的路径长度即为点从到的运动路径,为.故答案为:【题目点拨】本题主要考查的是等腰直角三角形的性质、等边三角形的性质、正方形的性质以及全等三角形的性质和判定,熟练掌握全等三角形的判定和性质是解题的关键.17、.【解题分析】

先用含有m的代数式把原不等式组的解集表示出来,然后和已知的解集比对,得到关于m的不等式,从而解答即可.【题目详解】在中,由(1)得,,由(2)得,,根据已知条件,不等式组解集是.根据“同大取大”原则.故答案为:.【题目点拨】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出解集与已知解集比较,进而求得另一个未知数.18、1【解题分析】

解出AB两点的坐标,可判断出四边形ADBC是平行四边形,由平行四边形对角线平分平行四边形的面积,所以四边形ADBC的面积为.【题目详解】解:解二元一次方程方程组解得或则A点坐标为(-2,2),B点坐标为(2,-2)C点坐标为(0,2),D点坐标为(2,-2)所以AC∥BD,AC=BD=2所以四边形ADBC是平行四边形则==2××2×4=1,故答案为1.【题目点拨】本题考查了正比例函数与反比例函数交点组成四边形求面积的问题,掌握相关知识点是解决本题的关键.三、解答题(共78分)19、(1)n(m-1)1;(1)(x-3)(4x+3)【解题分析】分析:(1)先提取公因式n,再根据完全平方公式进行二次分解.(1)利用平方差公式及提公因式法分解即可.详解:(1)原式=n(m1-1m+1)=n(m-1)1.(1)原式=x1-9+3x(x-3)=(x+3)(x-3)+3x(x-3)=(x-3)(x+3+3x)=(x-3)(4x+3).点睛:此题考查了提公因式法和运用公式法分解因式,熟练掌握因式分解的方法是解本题的关键.完全平方公式:a1±1ab+b1=(a±b)1.20、1【解题分析】

设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,构建方程组,利用整体的思想思考问题,求出x+4y即可.【题目详解】解:设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,

∵正方形MNKT,正方形EFGH,正方形ABCD的面积分别为S1,S2,S3,S1+S2+S3=18,

∴得出S1=x,S2=4y+x,S3=8y+x,

∴S1+S2+S3=3x+12y=18,故3x+12y=18,

x+4y=1,

所以S2=x+4y=1,即正方形EFGH的面积为1.

故答案为1【题目点拨】本题考查勾股定理的证明,正方形的性质、全等三角形的性质等知识,解题的关键是学会利用参数,构建方程组解决问题.21、(1)见解析;(2)DE=2【解题分析】

(1)根据已知条件得到四边形ABCD是平行四边形,根据AD∥BC证得∠DAE=∠F,∠D=∠DCF即可得到结论;(2)根据(1)的△ADE∽△FCE列式即可求出答案.【题目详解】(1)证明:∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形.∴AD∥BC.∴∠DAE=∠F,∠D=∠DCF.∴△ADE∽△FCE.(2)解:∵四边形ABCD是平行四边形,且AB=1,∴AB=CD=1.又∵△ADE∽△FCE,∴∵AD=6,CF=2,∴∴DE=2.【题目点拨】此题考查平行四边形的判定与性质,相似三角形的判定与性质,是一道较为基础的题型.22、和;两条直线与轴围成的三角形面积为1.【解题分析】

(1)将点A坐标代入两个函数解析式中求出k和b的值即可;(2)分别求出两个一次函数与y轴的交点坐标,代入三角形面积公式即可.【题目详解】解:将点分别代入两个一次函数解析式,得解得所以两个一次函数的解析式分别为和.(2)把代入,得;把代入,得.所以两个一次函数与轴的交点坐标分别为和.所以两条直线与轴围成的三角形面积为:.【题目点拨】本题考查了两条直线相交或平行问题以及待定系数法求一次函数的解析式,难度不大.23、(1)10;(2)1;(3)3;(4);(5)1小时.【解题分析】

(1)根据函数图象可知,B出发时与A相距10千米;(2)根据函数图象可知,走了一段路后,自行车发生故障进行修理,所用的时间是(1.5﹣0.5)小时;(3)根据图象可知B出发后3小时时与A相遇;(4)根据函数图象可知直线lA经过点(0,10),(3,25).用待定系数法求解析式;(5)先求直线lB的解析式,再解可得结果.【题目详解】(1)根据函数图象可知,B出发时与A相距10千米,故答案为10;(2)根据函数图象可知,走了一段路后,自行车发生故障进行修理,所用的时间是1.5﹣0.5=1小时,故答案为1;(3)根据图象可知B出发后3小时时与A相遇;(4)根据函数图象可知直线lA经过点(0,10),(3,25).设直线lA的解析式为:S=kt+b,则解得,k=5,b=10即A行走的路程S与时间t的函数关系式是:S=5t+10;·(5)设直线lB的解析式为:S=kt,∵点(0.5,7.5)在直线lB上,∴7.5=k×0.5得k=15∴S=15t∴解得S=15,t=1.故若B的自行车不发生故障,保持出发时的速度前进,1小时时与A相遇.【题目点拨】本题考核知识点:一次函数的应用.解题关键点:运用数形结合思想,结合题意,用函数知识解决问题.24、证明见解析.【解题分析】

首先连接BE,DF,由四边形ABCD是平行四边形,AE=CF,易得OB=OD,OE=OF,即可判定四边形BEDF是平行四边形,继而证得DE=BF.【题目详解】连接BE,DF,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,∴OE=OF,∴四边形BEDF是平行四边形,∴DE=BF.考点:1.平行四边形的性质;2.全等三角形的判定与性质.25、(1)12;(2)①AG=;②【解题分析】

(1)由折叠的性质可得∠BAE=∠CAE=12°;(2)①过点F作FH⊥AB于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论