四川省简阳市简城区、镇金区2024届八年级数学第二学期期末考试模拟试题含解析_第1页
四川省简阳市简城区、镇金区2024届八年级数学第二学期期末考试模拟试题含解析_第2页
四川省简阳市简城区、镇金区2024届八年级数学第二学期期末考试模拟试题含解析_第3页
四川省简阳市简城区、镇金区2024届八年级数学第二学期期末考试模拟试题含解析_第4页
四川省简阳市简城区、镇金区2024届八年级数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省简阳市简城区、镇金区2024届八年级数学第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列命题的逆命题能成立的有()①两条直线平行,内错角相等;②如果两个实数相等,那么它们的绝对值相等;③全等三角形的对应角相等;④在角的内部,到角的两边距离相等的点在角的平分线上.A.4个 B.3个 C.2个 D.1个2.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE3.已知y-3与x成正比例,且x=2时,y=7,则y与x的函数关系式为()A.y=2x+3 B.y=2x-3 C.y-3=2x+3 D.y=3x-34.若实数使关于的不等式组有且只有四个整数解,且实数满足关于的方程的解为非负数,则符合条件的所有整数的和为()A.1 B.2 C.-2 D.-35.如图,矩形ABCD中,对角线AC,BD相交于点O,∠ADB=30°,E为BC边上一点,∠AEB=45°,CF⊥BD于F.下列结论:①BE=CD,②BF=3DF,③AE=AO,④CE=CF.正确的结论有()A.①② B.②③ C.①②④ D.①②③6.已知等腰三角形的底角为65°,则其顶角为()A.50° B.65° C.115° D.50°或65°7.要使关于的分式方程有整数解,且使关于的一次函数不经过第四象限,则满足条件的所有整数的和是()A.-11 B.-10 C.2 D.18.如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是()A.16 B.18 C.20 D.229.四边形中,,,,,垂足分别为,则四边形一定是()A.正方形 B.菱形 C.平行四边形 D.矩形10.如图,已知的顶点,,点在轴的正半轴上,按以下步骤作图:①以点为圆心、适当长度为半径作弧,分别交、于点,;②分别以点,为圆心、大于的长为半径作弧,两弧在内交于点;③作射线,交边于点.则点的坐标为()A. B. C. D.11.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13141525283035其他人数30533171220923A.平均数 B.众数 C.方差 D.标准差12.下列计算正确的是()A.×= B.+= C. D.-=二、填空题(每题4分,共24分)13.某工厂原计划在规定时间内生产12000个零件,实际每天比原计划多生产100个零件,结果比规定时间节省了.若设原计划每天生产x个零件,则根据题意可列方程为_____.14.若n边形的每个内角都是,则________.15.如图,EF⊥AD,将平行四边形ABCD沿着EF对折.设∠1的度数为n°,则∠C=______.(用含有n的代数式表示)16.已知,那么________.17.如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为_______°.18.计算:________.三、解答题(共78分)19.(8分)如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m=;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.20.(8分)在等腰三角形ABC中,已知AB=AC=5cm,BC=6cm,AD⊥BC于D.求:底边BC上的高AD的长.21.(8分)如图,在▱ABCD中,点E是CD的中点,连接BE并延长交AD延长线于点F.(1)求证:点D是AF的中点;(2)若AB=2BC,连接AE,试判断AE与BF的位置关系,并说明理由.22.(10分)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.23.(10分)如图,将菱形OABC放置于平面直角坐标系中,边OA与x轴正半轴重合,D为边OC的中点,点E,F,G分别在边OA,AB与BC上,若∠COA=60°,OA=45,则当四边形DEFG为菱形时,点G的坐标为_____.24.(10分)解方程:x2-4x=1.25.(12分)某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需费用较少?26.在如图平面直角坐标系中,直线l分别交x轴、y轴于点A(3,0)、B(0,4)两点,动点P从点O开始沿OA向点A以每秒个单位长度运动,动点Q从点B开始沿BO向点O以每秒个单位长度运动,过点P作y轴的平行线交直线AB于点M,连接PQ.且点P、Q分别从点O、B同时出发,运动时间为t秒.(1)请直接写出直线AB的函数解析式:;(2)当t=4时,四边形BQPM是否为菱形?若是,请说明理由;若不是,请求出当t为何值时,四边形BQPM是菱形.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

写出各个命题的逆命题后判断真假即可.【题目详解】解:①两条直线平行,内错角相等的逆命题是内错角相等,两直线平行,成立;②如果两个实数相等,那么它们的绝对值相等的逆命题是绝对值相等的两个实数相等,不成立;③全等三角形的对应角相等的逆命题为对应角相等的三角形全等,不成立;④在角的内部,到角的两边距离相等的点在角的平分线上的逆命题是角平分线上的点到角的两边的距离相等,成立,成立的有2个,故选:C.【题目点拨】考查了命题与定理的知识,解题的关键是能够写出一个命题的逆命题,难度不大.2、B【解题分析】

先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.【题目详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,故选B.【题目点拨】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.3、A【解题分析】

用待定系数法可求出函数关系式.【题目详解】y-1与x成正比例,即:y=kx+1,且当x=2时y=7,则得到:k=2,则y与x的函数关系式是:y=2x+1.故选:A.【题目点拨】此题考查了待定系数法求一次函数解析式,利用正比例函数的特点以及已知条件求出k的值,写出解析式.4、A【解题分析】

先解不等式组,然后根据不等式组解集的情况即可列出关于m的不等式,从而求出不等式组中m的取值范围;然后解分式方程,根据分式方程解的情况列出关于m的不等式,从而求出分式方程中m的取值范围,然后取公共解集,即可求出结论.【题目详解】解:不等式组的解集为∵关于的不等式组有且只有四个整数解∴解得:分式方程的解为:∵关于的方程的解为非负数,∴解得:m≤2且m≠1综上所述:且m≠1∴符合条件的所有整数的和为(-1)+0+2=1故选A.【题目点拨】此题考查的是含参数的不等式组和含参数的分式方程,掌握根据不等式组解集的情况求参数的取值范围和分式方程解的情况求参数的取值范围是解决此题的关键.5、D【解题分析】

根据矩形的性质,由∠ADB=30°可得,△AOB和△COD都是等边三角形,再由∠AEB=45°,可得△ABE是等腰直角三角形,其边有特殊的关系,利用等量代换可以得出③AE=AO是正确的,①BE=CD是正确的,在正△COD中,CF⊥BD,可得DF=CD,再利用等量代换可得②BF=3DF是正确的,利用选项的排除法确定选项D是正确的.【题目详解】解:∵四边形ABCD是矩形,

∴AB=CD,AD=BC,AC=BD,AO=CO=BO=DO,∠ABC=∠ADC=∠BAD=∠BCD=90°,

∵∠AEB=45°,

∴∠BAE=∠AEB=45°

∴AB=BE=CD,AE=AB=CD,

故①正确,

∵∠ADB=30°,

∴∠ABO=60°且AO=BO,

∴△ABO是等边三角形,

∴AB=AO,

∴AE=AO,

故③正确,

∵△OCD是等边三角形,CF⊥BD,

∴DF=FO=OD=CD=BD,

∴BF=3DF,

故②正确,

根据排除法,可得选项D正确,

故选:D.【题目点拨】考查矩形的性质,含有30°角的直角三角形的特殊的边角关系、等边三角形的性质和判定等知识,排除法可以减少对④的判断,从而节省时间.6、A【解题分析】

等腰三角形的一个底角是65°,则另一个底角也是65°,据此用三角形内角和减去两个底角的度数,就是顶角的度数.【题目详解】解:180°65°65°=50°,∴它的顶角是50°.故选:A.【题目点拨】此题考查等腰三角形的性质和三角形内角和定理的灵活应用.7、C【解题分析】

依据关于一次函数不经过第四象限,求得a的取值范围;依据关于x的分式方程有整数解,即可得到整数a的取值,即可满足条件的所有整数a的和.【题目详解】关于一次函数不经过第四象限∴a+2>0∴a>-2分式方程有整数解∴为整数且∴a=-3,0,-4,2,-6又a>-2∴a=0,2∴满足条件的所有整数a的和为2故选C.【题目点拨】本题考查了一次函数的图象与系数的关系以及分式方程的解,注意根据题意求得a的值是关键.8、C【解题分析】试题分析:根据平行四边形的性质可得AO=6,则根据Rt△AOB的勾股定理得出BO=10,则BD=2BO=20.考点:平行四边形的性质9、C【解题分析】

根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理可得Rt△ADE≌Rt△CBF,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的判定定理即可得到结论.【题目详解】证明:∵BE=DF,∴BE−EF=DF−EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,AD=BC,DE=BF,∴Rt△ADE≌Rt△CBF(HL),∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,故选:C.【题目点拨】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.10、B【解题分析】

依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=,可得G(,3).【题目详解】解:如图:∵▱AOBC的顶点O(0,0),A(-1,3),∴AH=1,HO=3,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=,∴G(,3),故选:B.【题目点拨】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.11、B【解题分析】分析:根据平均数的意义,众数的意义,方差的意义进行选择.详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.故选B.点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.12、A【解题分析】

根据二次根式的运算即可判断.【题目详解】A.×=,正确;B.+不能计算,故错误;C.,故错误;D.-=,故错误;故选A.【题目点拨】此题主要考查二次根式的计算,解题的关键是熟知二次根式的运算法则.二、填空题(每题4分,共24分)13、-【解题分析】

设原计划每天生产x个零件,则根据时间差关系可列出方程.【题目详解】设原计划每天生产x个零件,根据结果比规定时间节省了.可得-故答案为:-【题目点拨】理解工作问题,从时间关系列出方程.14、1【解题分析】

根据内角度数先算出外角度数,然后再根据外角和计算出边数即可.【题目详解】解:∵n边形的每个内角都是120°,

∴每一个外角都是180°-120°=10°,

∵多边形外角和为310°,

∴多边形的边数为310÷10=1,故答案为:1.【题目点拨】此题主要考查了多边形的内角和外角,关键是掌握多边形的外角和等于310度.15、180°﹣n°【解题分析】

由四边形ABCD是平行四边形,可知∠B=180°﹣∠C;再由由折叠的性质可知,∠GHC=∠C,即可得∠GHB=180°﹣∠C;根据三角形的外角的性质可知∠1=∠GHB+∠B=360°﹣2∠C,即可得360°﹣2∠C=n°,由此求得∠C=180°﹣n°.【题目详解】∵四边形ABCD是平行四边形,∴∠B=180°﹣∠C,由折叠的性质可知,∠GHC=∠C,∴∠GHB=180°﹣∠C,由三角形的外角的性质可知,∠1=∠GHB+∠B=360°﹣2∠C,∴360°﹣2∠C=n°,解得,∠C=180°﹣n°,故答案为:180°﹣n°.【题目点拨】本题考查的是平行四边形的性质及图形翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.16、【解题分析】

直接利用已知得出,进而代入求出答案.【题目详解】解:∵,∴,∴.故答案为:.【题目点拨】此题主要考查了代数式的化简,正确用b代替a是解题关键.17、25【解题分析】∵□ABCD与□DCFE的周长相等,且有公共边CD,∴AD=DE,∠ADE=∠BCF=60°+70°=130°.∴∠DAE=118、【解题分析】

原式化简后,合并即可得到结果.【题目详解】解:原式=,故答案为:.【题目点拨】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.三、解答题(共78分)19、(1)1;(2)C的坐标为(3,0);(3)(﹣2,0).【解题分析】试题分析:(1)把点代入求值.(2)先利用反比例函数求出A,B,点坐标,再利用待定系数法求直线方程.(3)假设存在E点,因为ACD是直角三角形,假设ABE也是直角三角形,利用勾股定理分别计算A,B,C,是直角时AB长度,均与已知矛盾,所以不存在.试题解析:解:(1)∵点A(1,1)在反比例函数y=(x>0)的图象上,∴m=1×1=1,故答案为1.(2)∵点B(2,a)在反比例函数y=的图象上,∴a==2,∴B(2,2).设过点A、B的直线的解析式为y=kx+b,∴,解得:,∴过点A、B的直线的解析式为y=﹣2x+2.当y=0时,有﹣2x+2=0,解得:x=3,∴点C的坐标为(3,0).(3)假设存在,设点E的坐标为(n,0).①当∠ABE=90°时(如图1所示),∵A(1,1),B(2,2),C(3,0),∴B是AC的中点,∴EB垂直平分AC,EA=EC=n+3.由勾股定理得:AD2+DE2=AE2,即12+(x+1)2=(x+3)2,解得:x=﹣2,此时点E的坐标为(﹣2,0);②当∠BAE=90°时,∠ABE>∠ACD,故△EBA与△ACD不可能相似;③当∠AEB=90°时,∵A(1,1),B(2,2),∴AB=,2>,∴以AB为直径作圆与x轴无交点(如图3),∴不存在∠AEB=90°.综上可知:在x轴上存在点E,使以A、B、E为顶点的三角形与△ACD相似,点E的坐标为(﹣2,0).20、AD=4cm【解题分析】

根据等腰三角形三线合一的性质可得BD=BC=3cm,在Rt△ABD中,利用勾股定理即可求出AD的长.【题目详解】∵在等腰△ABC中,AB=AC=5cm,BC=6cm,AD⊥BC于D∴BD=BC=3cm∴AD=【题目点拨】本题考查利用等腰三角形的性质与勾股定理求解,熟练掌握等腰三角形三线合一的性质是解题的关键.21、(1)见解析;(2)AE⊥BF,理由见解析.【解题分析】

(1)根据平行四边形的性质可得AD∥BC,AD=BC,然后利用AAS即可证出BC=DF,从而得出AD=DF,即可证出结论;(2)根据全等三角形的性质可得BE=EF,然后证出AB=AF,利用三线合一即可得出结论.【题目详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠CBE=∠F,∵点E为CD的中点,∴CE=DE,在△BCE和△FDE中,,∴△BCE≌△FDE(AAS),∴BC=DF,∴AD=DF,即点D是AF的中点;(2)∵△BCE≌△FDE,∴BE=EF,∵AB=2BC,BC=AD,AD=DF,∴AB=AF,∴AE⊥BF.【题目点拨】此题考查的是平行四边形的性质、全等三角形的判定及性质和等腰三角形的性质,掌握平行四边形的性质、全等三角形的判定及性质和三线合一是解决此题的关键.22、(1)△CDF是等腰三角形;(2)∠APD=45°.【解题分析】

(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.【题目详解】(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.23、(35,215)【解题分析】

作辅助线,构建全等三角形,证明ΔODN≅ΔCDM(AAS),得DN=DM,由中点得OD=25,根据直角三角形30度角的性质和勾股定理得:ON=5,DN=15,所以MN=EG=215,证明DF=OA=45【题目详解】解:过D作MN⊥OA于N,交BC的延长线于M,连接DF、EG,交于点H,∵四边形ABCO是菱形,∴BM//OA,∴∠M=∠OND=90°,∵OD=DC,∠ODN=∠MDC,∴ΔODN≅ΔCDM(AAS),∴DN=DM,∵OA=OC=45∴OD=25RtΔDON中,∴∠ODN=30°,∴ON=5,DN=∴MN=2DN=215∵四边形DEFG是菱形,∴DF⊥EG,DH=12DF∴Rt∴MG=EN,∵MG//EN,∠M=90°,∴四边形MNEG为矩形,∴EG⊥BM,EG=MN=215∵BC//OA,DF⊥EG,EG⊥BC,∴DF//OA//BC,∵OD//AF,∴四边形DOAF是平行四边形,∴DF=OA=45∴DH=EN=1∴OE=ON+EN=35∴G(35,2故答案为:(35,2【题目点拨】本题考查坐标与图形的性质、菱形的性质、全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论