![2024届北京市第七中学八年级数学第二学期期末综合测试模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M01/32/25/wKhkGWXTiByABDUCAAJxC9W5--4049.jpg)
![2024届北京市第七中学八年级数学第二学期期末综合测试模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M01/32/25/wKhkGWXTiByABDUCAAJxC9W5--40492.jpg)
![2024届北京市第七中学八年级数学第二学期期末综合测试模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M01/32/25/wKhkGWXTiByABDUCAAJxC9W5--40493.jpg)
![2024届北京市第七中学八年级数学第二学期期末综合测试模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M01/32/25/wKhkGWXTiByABDUCAAJxC9W5--40494.jpg)
![2024届北京市第七中学八年级数学第二学期期末综合测试模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M01/32/25/wKhkGWXTiByABDUCAAJxC9W5--40495.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市第七中学八年级数学第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()
A. B.C. D.2.药品研究所开发一种抗菌新药,经过多年的动物实验之后首次用于临床人体试验,测得成人服药后血液中药物浓度(微克/毫升)与服药后的时间(时)之间的函数关系如图所示,则当,的取值范围是()A. B. C. D.3.若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣14.如图,在平面直角坐标系中,直线y=-3x+3与坐标轴分别交于A,B两点,以线段AB为边,在第一象限内作正方形ABCD,直线y=3x-2与y轴交于点F,与线段AB交于点E,将正方形ABCD沿x轴负半轴方向平移a个单位长度,使点D落在直线EF上.有下列结论:①△ABO的面积为3;②点C的坐标是(4,1);③点E到x轴距离是;④a=1.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个5.如图,正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形,则∠AED=()A.60° B.65° C.70° D.75°6.下列各式中,正确的是()A. B. C. D.7.如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=()A.50° B.40° C.80° D.100°8.如图,已知菱形ABCD的周长是24米,∠BAC=30°,则对角线BD的长等于()A.6米 B.3米 C.6米 D.3米9.如图,腰长为的等腰直角三角形绕直角顶点顺时针旋转得到,则图中阴影部分的面积等于()A. B. C. D.10.对于二次函数的图象与性质,下列说法正确的是()A.对称轴是直线,最大值是2 B.对称轴是直线,最小值是2C.对称轴是直线,最大值是2 D.对称轴是直线,最小值是2二、填空题(每小题3分,共24分)11.关于x的一元二次方程(x+1)(x+7)=-5的根为_______________.12.若关于的方程有增根,则的值为________.13.①412=_________;②3-27=14.己知三角形三边长分别为,,,则此三角形的最大边上的高等于_____________.15.已知,四边形ABCD中,AB∥CD,AB=8,DC=4,点M、N分别为边AB、DC的中点,点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,到达点A后立即原路返回,点P到达点C后点Q同时停止运动,设点P、Q运动的时问为t秒,当以点M、N、P、Q为顶点的四边形为平行四边形时,t的值为________。16.如图,四边形中,,,为上一点,分别以,为折痕将两个角(,)向内折起,点,恰好都落在边的点处.若,,则________.17.一组数据2,3,2,3,5的方差是__________.18.若关于的两个方程与有一个解相同,则__________.三、解答题(共66分)19.(10分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.20.(6分)这个图案是3世纪三国时期的赵爽在注解《周髀算经》时给出的,人们称它为赵爽弦图.赵爽根据此图指出:四个全等的直角三角形(直角边分别为a、b,斜边为c)可以如图围成一个大正方形,中间的部分是一个小正方形.请用此图证明.21.(6分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.22.(8分)如图,在长方形中,为平面直角坐标系的原点,点在轴上,点在轴上,点在第一象限内,点从原点出发,以每秒个单位长度的速度沿着的路线移动(即沿着长方形的边移动一周).(1)分别求出,两点的坐标;(2)当点移动了秒时,求出点的坐标;(3)在移动过程中,当三角形的面积是时,求满足条件的点的坐标及相应的点移动的时间.23.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,在平面直角坐标系中如图所示:完成下列问题:(1)画出△ABC绕点O逆时针旋转90∘后的△ABC;点B1的坐标为___;(2)在(1)的旋转过程中,点B运动的路径长是___(3)作出△ABC关于原点O对称的△ABC;点C的坐标为___.24.(8分)如图,一块四边形的土地,其中∠BAD=90°,AB=4m,BC=12m,CD=13m,AD=3m.(1)试说明BD⊥BC;(2)求这块土地的面积.25.(10分)一次函数的图象经过点.(1)求出这个一次函数的解析式;(2)求把该函数图象向下平移1个单位长度后得到的函数图象的解析式.26.(10分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠1.(1)求证:AE=CF;(1)求证:四边形EBFD是平行四边形.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;【题目详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选B.2、C【解题分析】
根据图像分别求出和时的函数表达式,再求出当x=1,x=3,x=6时的y值,从而确定y的范围.【题目详解】解:设当时,设,,解得:,;当时,设,,解得:,;当时,,当时,有最大值8,当时,的值是,∴当时,的取值范围是.故选:.【题目点拨】本题主要考查了求一次函数表达式和函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.3、B【解题分析】试题分析:先根据正比例函数的定义列出关于k的方程组,求出k的值即可.解:∵函数y=(k+1)x+k2﹣1是正比例函数,∴,解得k=1.故选B.考点:正比例函数的定义.4、B【解题分析】
①由直线解析式y=-3x+3求出AO=3,BO=1,即可求出△ABO的面积;②证明△BAO≌△CBN即可得到结论;③联立方程组,求出交点坐标即可得到结论;④如图作CN⊥OB于N,DM⊥OA于M,利用三角形全等,求出点D坐标即可解决问题.【题目详解】如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,①∵直线y=-3x+3与x轴、y轴分别交于B、A两点,∴点A(0,3),点B(1,0),∴AO=3,BO=1,∴△ABO的面积=,故①错误;②∵四边形ABCD是正方形,∴AB=AD=DC=BC,∠ABC=90°,∵∠BAO+∠ABO=90°,∠ABO+∠CBN=90°,∴∠BAO=∠CBN,在△BAO和△CBN中,,∴△BAO≌△CBN,∴BN=AO=3,CN=BO=1,∴ON=BO+BN=1+3=4,∴点C的坐标是(4,1),故②正确;③联立方程组,解得,y=,即点E到x轴的距离是,故③正确;④由②得DF=AM=BO=1,CF=DM=AO=3,∴点F(4,4),D(3,4),∵将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x-2上,∴把y=4代入y=3x-2得,x=2,∴a=3-2=1,∴正方形沿x轴负方向平移a个单位长度后,点D恰好落在直线y=3x-2上时,a=1,故④正确.故选B.【点评】本题考查反比例函数与一次函数的交点、正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.5、D【解题分析】
由题意可证△ABF≌△ADE,可得∠BAF=∠DAE=15°,可求∠AED=75°.【题目详解】∵四边形ABCD是正方形,∴AB=AD,∠B=∠C=∠D=∠DAB=90°,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,∵AD=AB,AF=AE,∴△ABF≌△ADE(HL),∴∠BAF=∠DAE=90°-60°2=15°∴∠AED=75°,故选D.【题目点拨】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,熟练运用这些性质和判定解决问题是本题的关键.6、D【解题分析】
先想一下分式的基本性质的内容,根据分式的基本性质逐个判断即可.【题目详解】解:(A)原式=,故A错误;(B)原式=,故B错误;(C)原式=,故C错误;故选:D.【题目点拨】本题考查了分式的基本性质的应用,主要考查学生对分式的基本性质的理解能力和判断能力,题目比较典型,比较容易出错.7、C【解题分析】
由平行四边形的性质及角平分线的性质可得∠ADC的大小,进而可求解∠B的度数.【题目详解】解:在Rt△ADF中,∵∠DAF=50°,∴∠ADE=40°,又∵DE平分∠ADC,∴∠ADC=80°,∴∠B=∠ADC=80°.故选:C.【题目点拨】本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.8、C【解题分析】
由菱形ABCD的周长是24米,∠BAC=30°,易求得AB=6米,△ABD是等边三角形,继而求得答案.【题目详解】解:∵菱形ABCD的周长是24米,∠BAC=30°,∴AB=AD=24÷4=6(米),∠DAB=2∠BAC=60°,∴△ABD是等边三角形,∴BD=AB=6米.故选C.【题目点拨】此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABD是等边三角形是解此题的关键.9、D【解题分析】
根据旋转的性质求出的值,根据勾股定理和阴影部分面积等于△ADB的面积减△BEF的面积,即可求得阴影部分的面积.【题目详解】旋转,,,,,,设,则,,,,..故选D.【题目点拨】本题考查了阴影部分的面积问题,掌握旋转的性质和三角形的面积公式是解题的关键.10、A【解题分析】
根据抛物线的图象与性质即可判断.【题目详解】解:由抛物线的解析式:y=-(x-1)2+2,
可知:对称轴x=1,
开口方向向下,所以有最大值y=2,
故选:A.【题目点拨】本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型.二、填空题(每小题3分,共24分)11、【解题分析】
整理成一般式后,利用因式分解法求解可得.【题目详解】解:整理得:x2+8x+12=0,
(x+2)(x+1)=0,
x+2=0,x+1=0,
x1=-2,x2=-1.故答案为:.【题目点拨】本题考查因式分解法解一元二次方程,能把一元二次方程转化成一元一次方程是解题的关键.12、;【解题分析】
先将m视为常数求解分式方程,得出方程关于m的解,再根据方程有增根判断m的值.【题目详解】去分母得:2x+1-x-2=m解得:x=m+1∵分式方程有增根∴x=-2∴m+1=-2解得:m=-1故答案为;-1.【题目点拨】本题考查解分式方程增根的情况,注意当方程中有字母时,我们通常是将字母先视为常数进行计算,后续再讨论字母的情况.13、①322,②-3,③4x【解题分析】
①根据二次根式的性质化简即可解答②根据立方根的性质计算即可解答③根据积的乘方,同底数幂的除法,进行计算即可解答【题目详解】①412=②3-27③(2x)2⋅x3÷【题目点拨】此题考查二次根式的性质,同底数幂的除法,解题关键在于掌握运算法则14、【解题分析】分析:根据勾股定理的逆定理可判断三角形为直角三角形,然后根据直角三角形的面积求解即可.详解:∵三角形三边长分别为,,∴∴三角形是直角三角形∴∴高为故答案为.点睛:此题主要考查了勾股定理的逆定理的应用,利用勾股定理的逆定理判断此三角形是直角三角形是解题关键.15、1或1.5或3.5【解题分析】
利用线段中点的定义求出DN,BM的长,再根据两点的运动速度及运动方向,分情况讨论:当0<t≤2时,PN=2-t,MQ=4-3t或MQ=3t-4;当2<t≤4时PN=t-2,MQ=12-3t,然后根据平行四边形的判定定理,由题意可知当PN=MQ,以点M、N、P、Q为顶点的四边形为平行四边形,分别建立关于t的方程,分别求解即可【题目详解】解:∵点M、N分别为边AB、DC的中点,∴DN=12DC=12BM=12AB=12∵点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,点P到达点C后点Q同时停止运动,∴DP=t,BQ=3t,当0<t≤2时,PN=2-t,MQ=4-3t或MQ=3t-4当2<t≤4时PN=t-2,MQ=12-3t∵AB∥CD∴PN∥MQ;∴当PN=MQ,以点M、N、P、Q为顶点的四边形为平行四边形,∴2-t=4-3t,或2-t=3t-4,或t-2=12-3t,解之:t=1或t=1.5或t=3.5.故答案为:t=1或1.5或3.5.【题目点拨】本题考查平行四边形的判定和性质,一元一次方程等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16、【解题分析】
先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC-BH=BC-AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=,所以EF=.【题目详解】解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
∴AB=2EF,DC=DF+CF=8,
作DH⊥BC于H,
∵AD∥BC,∠B=90°,
∴四边形ABHD为矩形,
∴DH=AB=2EF,HC=BC-BH=BC-AD=5-3=2,
在Rt△DHC中,DH=,∴EF=DH=.故答案为:.【题目点拨】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.17、1.2【解题分析】
解:先求出平均数(2+3+2+3+5)5=3,再根据方差公式计算方差=即可18、1【解题分析】
首先解出一元二次方程的解,根据两个方程的解相同,把x的值代入第二个方程中,解出a即可.【题目详解】解:解方程得x1=2,x2=−1,∵x+1≠0,∴x≠−1,把x=2代入中得:,解得:a=1,故答案为1.【题目点拨】此题主要考查了解一元二次方程,以及解分式方程,关键是正确确定x的值,分式方程注意分母要有意义.三、解答题(共66分)19、猜想:BE∥DF,BE=DF;证明见解析.【解题分析】试题分析:利用平行四边形的性质和平行线的性质可以得到相等的线段和相等的角,从而可以证明△BCE≌△DAF,进而证得结论.试题解析:猜想:BE∥DF且BE=DF.证明:∵四边形ABCD是平行四边形,∴CB=AD,CB∥AD,∴∠BCE=∠DAF,在△BCE和△DAF,∴△BCE≌△DAF,∴BE=DF,∠BEC=∠DFA,∴BE∥DF,即BE∥DF且BE=DF.考点:1.平行四边形的性质;2.全等三角形的判定与性质.20、证明见解析【解题分析】
利用面积关系列式即可得到答案.【题目详解】∵大正方形面积=4个小直角三角形面积+小正方形面积,∴,∴.【题目点拨】此题考查了勾股定理的证明过程,正确理解图形中各部分之间的面积关系是解题的关键.21、(1)见解析(1)1+【解题分析】试题分析:(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AF,从而得证.(1)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.解:(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形.∴AD=BD.∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°.∴∠CAD=∠CBE.在△ADC和△BDF中,∠CAD=∠CBF,AD=BD,∠ADC=∠BDF=90°,∴△ADC≌△BDF(ASA).∴BF=AC.∵AB=BC,BE⊥AC,∴AC=1AE.∴BF=1AE.(1)∵△ADC≌△BDF,∴DF=CD=.在Rt△CDF中,.∵BE⊥AC,AE=EC,∴AF=CF=1.∴AD=AF+DF=1+.22、(1)点,点;(2)点;(3)①P(0,5),移动时间为秒;②P(,6),移动时间为秒;③P(4,1),移动时间为:秒;④P(,0),移动时间为:秒【解题分析】
(1)根据点A,点C的位置即可解答;(2)根据点P的速度及移动时间即可解答;(3)对点P的位置分类讨论,根据三角形的面积计算公式即可解答.【题目详解】解:(1)点在轴上,点在轴上,∴m+2=0,n-1=0,∴m=-2,n=1.∴点,点(2)由(1)可知:点,点当点移动了秒时,移动的路程为:4×2=8,∴此时点P在CB上,且CP=2,∴点.(3)①如图1所示,当点P在OC上时,∵△OBP的面积为10,∴,即,解得OP=5,∴点P的坐标为(0,5),运动时间为:(秒)②如图2所示,当点P在BC上时,∵△OBP的面积为10,∴,即,解得BP=,∴CP=∴点P的坐标为(,6),运动时间为:(秒)③如图3所示,当点P在AB上时,∵△OBP的面积为10,∴,即,解得BP=5,∴AP=1∴点P的坐标为(4,1),运动时间为:(秒)④如图4所示,当点P在OA上时,∵△OBP的面积为10,∴,即,解得OP=,∴点P的坐标为(,0),运动时间为:(秒)综上所述:①P(0,5),移动时间为秒;②P(,6),移动时间为秒;③P(4,1),移动时间为:秒;④P(,0),移动时间为:秒.【题目点拨】本题考查了平面直角坐标系中的坐标及动点运动问题,解题的关键是熟知平面直角坐标系中点的特点及动点的运动情况.23、(1)图见解析,;(2);(3)图见解析,(2,3).【解题分析】
(1)如图,画出△ABC绕原点O逆时针旋转90°的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租赁补贴申请书
- 高速收费员申请书
- DB31T1110.2-食品和食用农产品全链条信息追溯 第2部分:数据元规范编制说明
- 基因缺失重组疫苗项目风险识别与评估综合报告
- 设计高效的缓存管理方案
- 国际市场营销学模拟考试题和答案
- DB2201-T 19-2022 城市智能体数据指标卡片管理规范
- 一建《建设工程项目管理》试题库资料练习含【答案】卷50
- 四川省眉山市区县高中学校2024-2025学年高三上学期12月期中联考物理试题
- 2024-2025学年山东省德州市优高联盟九校联考高三上学期1月考试英语试题(解析版)
- 单元知识结构图(排球)
- 船舶轮机英语_专业用语
- 羊水栓塞的处理)
- 初中英语考试答题卡(可编辑WORD版)
- 风光高压变频器用户手册最新2011-11-17
- 基层法律服务所设立登记表
- 第四代建筑悬挑阳台脚手架施工
- 三相四线及三相三线错误接线向量图研究分析及更正
- 线务员之歌(电信线务员朗诵词)
- (完整版)fluent炉膛仿真教程文档
- 生活饮用水水质常规指标及限值表
评论
0/150
提交评论