福建省南平市2024届八年级数学第二学期期末综合测试试题含解析_第1页
福建省南平市2024届八年级数学第二学期期末综合测试试题含解析_第2页
福建省南平市2024届八年级数学第二学期期末综合测试试题含解析_第3页
福建省南平市2024届八年级数学第二学期期末综合测试试题含解析_第4页
福建省南平市2024届八年级数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省南平市2024届八年级数学第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE2.如图,,,垂足分别是,,且,若利用“”证明,则需添加的条件是()A. B.C. D.3.如果5x=6y,那么下列结论正确的是()A. B. C. D.4.定义,当时,,当<时,;已知函数,则该函数的最大值是()A. B. C. D.5.已知一组数据共有个数,前面个数的平均数是,后面个数的平均数是,则这个数的平均数是()A. B. C. D.6.如图,Rt△ABC中,∠ACB=90°,AC=BC=2,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为()A.4π B.4π C.8π D.8π7.下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比为1:2:3 B.三条边满足关系a2=b2﹣c2C.三条边的比为1:2:3 D.三个角满足关系∠B+∠C=∠A8.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.109.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.3,4,5 D.1,,10.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为().A.22 B.18 C.14 D.1111.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定12.如图,在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED。正确的是()A.②③ B.②③④ C.③④ D.①②③④二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数的图象上,从左向右第3个正方形中的一个顶点A的坐标为,阴影三角形部分的面积从左向右依次记为、、、、,则的值为______用含n的代数式表示,n为正整数14.如图,在▱ABCD中(AD>AB),用尺规作图作射线BP交AD于点E,若∠D=50°,则∠AEB=___度.15.如图,在直角坐标系中,正方形A1B1C1O、A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的顶点A1、A2、A3、…、An均在直线y=kx+b上,顶点C1、C2、C3、…、Cn在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A4的坐标为,点An的坐标为.16.若二次根式有意义,则的取值范围为_____.17.如图,在菱形中,,过的中点作,垂足为点,与的延长线相交于点,则_______,_______.18.如图,在R△ABC中,∠C=90°,AC=3,BC=4,点P是AB上的一个动点,过点P作PM⊥AC于点M,PN⊥BC于点N,连接MN,则MN的最小值为_____.三、解答题(共78分)19.(8分)如图,中,,是边上的高.点是中点,延长到,使,连接,.若,.(1)求证:四边形是矩形;(2)求四边形的面积.20.(8分)直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF//AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.(1)①直线y=x-6与坐标轴交点坐标是A(_____,______),B(______,_____);②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);(2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);(3)连接AD,BC四边形ABCD是什么图形,并求t为何值时,四边形ABCD的面积为36?21.(8分)如图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t之间的函数关系式;(2)通话2分钟应付通话费多少元?通话7分钟呢?22.(10分)如图,在平面直角坐标系中,为坐标原点,的三个顶点坐标分别为,,,与关于原点对称.(1)写出点、、的坐标,并在右图中画出;(2)求的面积.23.(10分)如图,△ABC中,∠ACB=90°,D是AB中点,过点B作直线CD的垂线,垂足为E,求证:∠EBC=∠A.24.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,线段AB的长度为;若在图中画出以C为直角顶点的Rt△ABC,使点C在格点上,请在图中画出所有点C;(2)在图②中,以格点为顶点,请先用无刻度的直尺画正方形ABCD,使它的面积为13;再画一条直线PQ(不与正方形对角线重合),使PQ恰好将正方形ABCD的面积二等分(保留作图痕迹).25.(12分)解分式方程:26.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元。(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购进这两种型号的节能灯共80只,并且A型节能灯的数量不多于B型节能灯的3倍,问如何购买最省钱,说明理由。

参考答案一、选择题(每题4分,共48分)1、B【解题分析】试题分析:∵DE是△ABC的中位线,∴DE∥BC,DE=BC,∵CF∥BD,∴四边形BCFD是平行四边形,∴DF=BC,CF=BD,∴EF=DF-DE=BC-DE=BC=DE.故选B.点睛:本题考查了三角形中位线定理和平行四边形的判定与性质,得出四边形BCFD是平行四边形是解决此题的关键.2、B【解题分析】

本题要判定,已知DE=BF,∠BFA=∠DEC=90°,具备了一直角边对应相等,故添加DC=BA后可根据HL判定.【题目详解】在△ABF与△CDE中,DE=BF,由DE⊥AC,BF⊥AC,可得∠BFA=∠DEC=90°.∴添加DC=AB后,满足HL.故选B.【题目点拨】本题考查了直角三角形全等的判定定理的应用,注意:判定两直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.3、A【解题分析】试题解析:A,可以得出:故选A.4、B【解题分析】

根据直线y=x-3和直线y=2x+3,知它们的交点的坐标为(-6,-1),再根据新定义讨论:x≤-6,y=2x+3,利用一次函数的性质得到y有最大值-1;x>-6时,y=x-3,则x=-6时,利用一次函数的性质得到y有最大值-1;【题目详解】解:当x-3≥2x+3,解得x≤-6时,y=min(x-3,2x+3)=2x+3,则x=-6时,y有最大值-1;

当x-3<2x+3,解得x>-6时,y=min(x-3,2x+3)=x-3,则x=-6时,y有最大值-1;

所以该函数的最大值是-1.

故选:B.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5、C【解题分析】

由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【题目详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【题目点拨】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..6、D【解题分析】解:Rt△中,∠ACB=90°,,∴AB=4,∴所得圆锥底面半径为5,∴几何体的表面积,故选D.7、C【解题分析】试题分析:选项A,三个角的比为1:2:3,设最小的角为x,则x+2x+3x=180°,x=30°,3x=90°,选项A正确;选项B,三条边满足关系a2=b2-c2,根据勾股定理的逆定理可得选项B正确;选项C,三条边的比为1:2:3,12+22≠32,选项C错误;选项D,三个角满足关系∠B+∠C=∠A,则∠A为90°,选项D正确.故答案选C.考点:三角形的内角和定理;勾股定理的逆定理.8、C【解题分析】

根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD的长,即可得出BC的长.【题目详解】在△ABC中,AB=AC,AD是∠BAC的平分线,ADBC,BC=2BD.∠ADB=90°在Rt△ABD中,根据勾股定理得:BD===4BC=2BD=2×4=8.故选C.【题目点拨】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.9、C【解题分析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【题目详解】A.4+5≠6,不能构成直角三角形,故不符合题意;B.2+3≠4,不能构成直角三角形,故不符合题意;C.3+4=5,能构成直角三角形,故符合题意;D.1+()≠(),不能构成直角三角形,故不符合题意。故选C.【题目点拨】此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算10、A【解题分析】试题分析:根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB=4,然后求出EC=BE+BC=4+4=8,同理可得AF=8,因为AD∥BC,所以四边形AECF是平行四边形,所以四边形AECF的周长=2(AE+EC)=2(3+8)=1.故选A.考点:菱形的性质;平行四边形的判定与性质.11、B【解题分析】

通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.12、B【解题分析】分析:求出OA=OC=OD=BD,求出∠ADB=30°,求出∠ABO=60°,得出等边三角形AOB,求出AB=BO=AO=OD=OC=DC,推出BF=AB,求出∠H=∠CAH=15°,求出DE=EO,根据以上结论推出即可.详解:∵∠AFC=135°,CF与AH不垂直,∴点F不是AH的中点,即AF≠FH,∴①错误;∵四边形ABCD是矩形,∴∠BAD=90°,∵AD=,AB=1,∴tan∠ADB=,∴∠ADB=30°,∴∠ABO=60°,∵四边形ABCD是矩形,,,,,∴AO=BO,∴△ABO是等边三角形,∴AB=BO,,∵AF平分∠BAD,,,,,,,,∴②正确;,,,,,,,,,∴③正确;∵△AOB是等边三角形,,∵四边形ABCD是矩形,,OB=OD,AB=CD,∴DC=OC=OD,,,即BE=3ED,∴④正确;即正确的有3个,故选C.点睛:本题考查了矩形的性质,平行线的性质,角平分线定义,定义三角形的性质和判定,等边三角形的性质和判定等知识点的综合运用,难度偏大,对学生提出较高的要求.二、填空题(每题4分,共24分)13、【解题分析】

由题意可知Sn是第2n个正方形和第(2n-1)个正方形之间的阴影部分,先由已知条件分别求出图中第1个、第2个、第3个和第4个正方形的边长,并由此计算出S1、S2,并分析得到Sn与n间的关系,这样即可把Sn给表达出来了.【题目详解】∵函数y=x与x轴的夹角为45°,

∴直线y=x与正方形的边围成的三角形是等腰直角三角形,

∵A(8,4),

∴第四个正方形的边长为8,

第三个正方形的边长为4,

第二个正方形的边长为2,

第一个正方形的边长为1,

…,

第n个正方形的边长为,第(n-1)个正方形的边长为,

由图可知,S1=,S2=,…,由此可知Sn=第(2n-1)个正方形面积的一半,∵第(2n-1)个正方形的边长为,∴Sn=.

故答案为:.【题目点拨】通过观察、计算、分析得到:“(1)第n个正方形的边长为;(2)Sn=第(2n-1)个正方形面积的一半.”是正确解答本题的关键.14、1.【解题分析】

由平行四边形的性质可知:AD∥BC,推出∠AEB=∠EBC,求出∠EBC即可;【题目详解】∵四边形ABCD是平行四边形,∴∠ABC=∠D=50°,AD∥BC,由作图可知,BE平分∠ABC,∴∠EBC=∠ABC=1°,∴∠AEB=∠EBC=1°,故答案为1.【题目点拨】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15、A4(7,8);An(2n-1-1,2n-1).【解题分析】

∵点B1的坐标为(1,1),点B2的坐标为(3,2)∴由题意知:A1的坐标是(0,1),A2的坐标是:(1,2),∴直线A1A2的解析式是y=x+1.纵坐标比横坐标多1.∵A1的纵坐标是:1=20,A1的横坐标是:0=20-1;A2的纵坐标是:1+1=21,A2的横坐标是:1=21-1;A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22-1,A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23-1,即点A4的坐标为(7,8).∴An的纵坐标是:2n-1,横坐标是:2n-1-1,即点An的坐标为(2n-1-1,2n-1).故答案为(7,8);(2n-1-1,2n-1).16、.【解题分析】

根据二次根式有意义的条件:二次根号下被开方数≥0,即可解答.【题目详解】根据题意得,,解得.故答案为:.【题目点拨】本题考查二次根式有意义的条件,熟练掌握二次根号下被开方数≥0是解题关键.17、1【解题分析】

由菱形的性质可得AB=AD=CD=4,AB∥CD,由“ASA”可证△AEF≌△DEH,可得AF=HD=1,由三角形面积公式可求△CEF的面积.【题目详解】∵四边形是菱形,∴.∵点是的中点,∴.∵,∴,∴.∵,∴,且,∴,∴,∴.∴.故答案为:1,.【题目点拨】此题考查菱形的性质,全等三角形的判定和性质,直角三角形的性质,证明AF=HD=1是解题的关键.18、2.1【解题分析】

连接,利用勾股定理列式求出,判断出四边形是矩形,根据矩形的对角线相等可得,再根据垂线段最短可得时,线段的值最小,然后根据三角形的面积公式列出方程求解即可.【题目详解】解:如图,连接.,,,,,,,四边形是矩形,,由垂线段最短可得时,线段的值最小,此时,,即,解得.故答案为:2.1.【题目点拨】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出时,线段的值最小是解题的关键,难点在于利用三角形的面积列出方程.三、解答题(共78分)19、(1)见解析;(2).【解题分析】

(1)根据平行四边形的判定得出四边形是平行四边形,推出,根据矩形的判定得出即可;(2)依据等腰三角形三线合一的性质可求得,然后证明为等边三角形,从而可求得的长,然后依据勾股定理可求得的长,最后利用矩形的面积公式求出即可.【题目详解】(1)证明:点是中点,,又,四边形是平行四边形.是边上的高,,四边形的是矩形.(2)解:是等腰三角形边上的高,,四边形的是矩形,.,是等边三角形,,.在中,,,,由勾股定理得,∴四边形的面积.【题目点拨】本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解此题的关键.20、(1)①6,0,0,-6;②见详解;(2)证明见详解,当时,四边形DHEF为菱形;(3)四边形ABCD是矩形,当时,四边形ABCD的面积为1.【解题分析】

(1)①令求出x的值即可得到A的坐标,令求出y的值即可得到B的坐标;②先求出t=2时E,F的坐标,然后找到A,B关于EF的对称点,即可得到折叠后的图形;(2)先利用对称的性质得出,然后利用平行线的性质和角度之间的关系得出,由此可证明四边形DHEF为平行四边形,要使四边形DHEF为菱形,只要,利用,然后表示出EF,建立一个关于t的方程进而求解即可;(3)AB和CD关于EF对称,根据对称的性质可知四边形ABCD为平行四边形,由(2)知,即可判断四边形ABCD的形状,由,可知,建立关于四边形ABCD面积的方程解出t的值即可.【题目详解】(1)①令,则,解得,∴;令,则,∴;②当t=2时,,图形如下:(2)如图,∵四边形DCEF与四边形ABEF关于直线EF对称,,.,.,,,,即轴,,∴四边形DHEF为平行四边形.要使四边形DHEF为菱形,只需,,,.又,,,解得,∴当时,四边形DHEF为菱形;(3)连接AD,BC,∵AB和CD关于EF对称,∴,∴四边形ABCD为平行四边形.由(2)知,.,,∴四边形ABCD为矩形.∵,.,,∴四边形ABCD的面积为,解得,∴当时,四边形ABCD的面积为1.【题目点拨】本题主要考查一次函数与四边形综合,掌握平行四边形的判定及性质,矩形的判定,勾股定理,菱形的性质并利用方程的思想是解题的关键.21、(1)当0<t≤3时,y=2.4;当t>3时,y=t-0.6;(2)2.4元;6.4元【解题分析】试题分析:(1)由图,当时,y为恒值;当时,图象过点(3,2.4)、(5,4.4),可根据待定系数法求函数关系式;(2)因为,所以根据AB段对应的函数即可得到结果;因为7>3,所以根据BC段对应的函数关系式即可得结果.(1)当时,;当时,设函数关系式为,∵图象过点(3,2.4)、(5,4.4),,解得,y与t之间的函数关系式为;(2)当时,元,当时,元.考点:本题考查的是一次函数的应用点评:此类题目的解决需仔细分析函数图象,从中找寻信息,利用待定系数法求出函数解析式,从而解决问题.22、(1)、、,作图见解析;(2)6【解题分析】

(1)利用关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用三角形面积公式计算.【题目详解】解:(1)如图,△A1B1C1为所作,∴、、;(2);【题目点拨】本题考查三角形的面积计算,难度不大,解决本题的关键是正确掌握关于原点对称的点的坐标的特点.23、详见解析【解题分析】

由直角三角形斜边中线等于斜边的一半可得CD=BD,从而可得∠DCB=∠ABC,再根据直角三角形两锐角互余通过推导即可得出答案.【题目详解】∵∠ACB=90°,∴∠A+∠ABC=90°,又∵D是AB中点,∴CD=BD,∴∠DCB=∠ABC,又∵∠E=90°,∴∠ECB+∠EBC=90°,∴∠EBC=∠A.【题目点拨】本题考查了直角三角形斜边中线的性质,直角三角形两锐角互余,等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论