2024届山东省临沂市兰陵县八年级数学第二学期期末质量跟踪监视模拟试题含解析_第1页
2024届山东省临沂市兰陵县八年级数学第二学期期末质量跟踪监视模拟试题含解析_第2页
2024届山东省临沂市兰陵县八年级数学第二学期期末质量跟踪监视模拟试题含解析_第3页
2024届山东省临沂市兰陵县八年级数学第二学期期末质量跟踪监视模拟试题含解析_第4页
2024届山东省临沂市兰陵县八年级数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省临沂市兰陵县八年级数学第二学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列方程中,有实数根的方程是()A.x4+16=0 B.x2+2x+3=0 C. D.2.下列各组数中,不是勾股数的是()A.3,4,5 B.5,12,13 C.6,8,10 D.7,13,183.如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处,当为直角三角形时,的长为()A.3 B. C.2或3 D.3或4.在一幅长,宽的硅藻泥风景画的四周,增添一宽度相同的装饰纹边,制成一幅客厅装饰画,使得硅藻泥风景画的面积是整个客厅装饰画面积的,设装饰纹边的宽度为,则可列方程为()A.B.C.D.5.样本方差的计算公式中,数字30和20分别表示样本的(

)A.众数、中位数 B.方差、标准差 C.数据的个数、中位数 D.数据的个数、平均数6.如图,在正方形ABCD中,E为AB中点,连结DE,过点D作DF⊥DE交BC的延长线于点F,连结EF.若AE=1,则EF的值为()A.3 B.10 C.23 D.7.若,则变形正确的是()A. B. C. D.8.使式子有意义的x的取值范围是().A.x≤1 B.x≤1且x≠﹣2C.x≠﹣2 D.x<1且x≠﹣29.如图,天平右盘中的每个砝码的质量都是,则物体的质量的取值范围,在数轴上可表示为()A. B.C. D.10.一个多边形每个外角都是,则该多边形的边数是()A.4 B.5 C.6 D.7二、填空题(每小题3分,共24分)11.已知平行四边形ABCD中,∠A﹣∠B=50°,则∠C=_____.12.如图,在平面直角坐标系中,点在直线上.连结,将线段绕点顺时针旋转,点的对应点恰好落在直线上,则的值为_____.13.如图,己知:,,,,则_______.14.若x、y为实数,且满足,则x+y的值是_________.15.小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是______人.16.一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则a=.17.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=3cm,则PC的长为_____cm.18.某商场利用“五一”开展促销活动:一次性购买某品牌服装件,每件仅售元,如果超过件,则超过部分可享受折优惠,顾客所付款(元)与所购服装件之间的函数解析式为__________.三、解答题(共66分)19.(10分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?20.(6分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100;九(2)班:89,93,93,93,95,96,96,98,98,1.通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100m939312九(2)班195np8.4(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.21.(6分)解方程(1)(2)(3)22.(8分)为了增强学生的身体素质,某校坚持长年的全员体育锻炼,并定期进行体能测试,下面是将某班学生的立定跳远成绩(精确到0.01m),进行整理后,分成5组,画了的频率分布直方图的部分,已知:从左到右4个小组的频率分别是:0.05,0.15,0.30,0.35,第五小组的频数是1.(1)该班参加测试的人数是多少?(2)补全频率分布直方图.(3)若该成绩在2.00m(含2.00)的为合格,问该班成绩合格率是多少?23.(8分)某城镇在对一项工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲队工程款2万元,付乙队工程款1.5万元.现有三种施工方案:()由甲队单独完成这项工程,恰好如期完工;()由乙队单独完成这项工程,比规定工期多6天;()由甲乙两队后,剩下的由乙队单独做,也正好能如期完工.小聪同学设规定工期为天,依题意列出方程:.(1)请将()中被墨水污染的部分补充出来:________;(2)你认为三种施工方案中,哪种方案既能如期完工,又节省工程款?说明你的理由.24.(8分)用适当的方法解一元二次方程:x2+4x+3=1.25.(10分)某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.26.(10分)如图,正方形中,经顺时针旋转后与重合.(1)旋转中心是点,旋转了度;(2)如果,,求的长.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

利用在实数范围内,一个数的偶数次幂不能为负数对A进行判断;利用判别式的意义对B进行判断;利用分子为0且分母不为0对C进行判断;利用非负数的性质对D进行判断.【题目详解】解:A、因为x4=﹣16<0,所以原方程没有实数解,所以A选项错误;B、因为△=22﹣4×3=﹣8<0,所以原方程没有实数解,所以B选项错误;C、x2﹣4=0且x﹣2≠0,解得x=﹣2,所以C选项正确;D、由于x=0且x﹣1=0,所以原方程无解,所以D选项错误.故选:C.【题目点拨】此题考查判别式的意义,分式有意义的条件,二次根式,解题关键在于掌握运算法则2、D【解题分析】

根据勾股定理的逆定理,验证两小边的平方和是否等于最长边的平方即可得.【题目详解】A、32+42=52,能构成直角三角形,是正整数,故是勾股数;B、52+122=132,能构成直角三角形,是正整数,故是勾股数;C、62+82=102,能构成直角三角形,是正整数,故是勾股数;D、72+132≠182,不能构成直角三角形,故不是勾股数,故选D.【题目点拨】本题考查了勾股定理的逆定理,勾股数问题,给三个正整数,看两个较小的数的平方和是否等于最大数的平方,若相等,则这三个数为勾股数,否则就不是.3、D【解题分析】

当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【题目详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示。连结AC,在Rt△ABC中,AB=3,BC=4,∴AC=∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A.B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5−3=2,设BE=x,则EB′=x,CE=4−x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4−x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示。此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故选:D.【题目点拨】此题主要考查矩形的折叠问题,解题的关键是根据题意分情况讨论.4、B【解题分析】

设装饰纹边的宽度为xcm,则装饰画的长为(200+2x)cm、宽为(1+2x)cm,根据矩形的面积公式结合硅藻泥风景画的面积是整个客厅装饰画面积的78%,即可得出关于x的一元二次方程,此题得解.【题目详解】解:设装饰纹边的宽度为xcm,则装饰画的长为(200+2x)cm、宽为(1+2x)cm,根据题意得:(200+2x)(1+2x)×78%=200×1.故选:B.【题目点拨】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5、D【解题分析】【分析】方差公式中,n、分别表示数据的个数、平均数.【题目详解】样本方差的计算公式中,数字30和20分别表示样本的数据的个数、平均数.故选:D【题目点拨】本题考核知识点:方差.解题关键点:理解方差公式的意义.6、B【解题分析】

根据题意可得AB=2,∠ADE=∠CDF,可证△ADE≌△DCF,可得CF=1,根据勾股定理可得EF的长.【题目详解】∵ABCD是正方形∴AB=BC=CD,∠A=∠B=∠DCB=∠ADC=90°∵DF⊥DE∴∠EDC+∠CDF=90°且∠ADE+∠EDC=90°∴∠ADE=∠CDF且AD=CD,∠A=∠DCF=90°∴△ADE≌△CDF∴AE=CF=1∵E是AB中点∴AB=BC=2∴BF=3在Rt△BEF中,EF=BE2故选B.【题目点拨】本题考查了正方形的性质,全等三角形的判定,勾股定理,关键熟练运用这些性质解决问题.7、D【解题分析】

根据不等式的性质即可判断.【题目详解】若,则x+2<y+2,故A错误;<,故B错误;x-2<y-2,故C错误;,故D正确;故选D.【题目点拨】此题主要考查不等式的性质,解题的关键是熟知不等式的性质及应用.8、B【解题分析】

根据被开方数大于等于0,分母不等于0列式计算即可得解.【题目详解】解:由题意得,1﹣x≥0且1+x≠0,解得x≤1且x≠﹣1.故选B.考点:二次根式有意义的条件;分式有意义的条件.9、A【解题分析】∵由图可知,1g<m<2g,∴在数轴上表示为:。故选A..10、B【解题分析】

用多边形的外角和360°除以72°即可.【题目详解】解:边数n=360°÷72°=1.故选:B.【题目点拨】本题考查了多边形的外角和等于360°,是基础题,比较简单.二、填空题(每小题3分,共24分)11、115°.【解题分析】

根据平行四边形的邻角互补可得∠A+∠B=180°,和已知∠A﹣∠B=50°,就可建立方程求出∠A的度数,再由平行四边形的性质即可得∠C的度数.【题目详解】在平行四边形ABCD中,∠A+∠B=180°,又∵∠A﹣∠B=50°,把这两个式子相加即可求出∠A=115°,∴∠A=∠C=115°,故答案为115°.【题目点拨】本题考查了平行四边形的性质:邻角互补,对角相等,熟知性质是解题的关键.12、2【解题分析】

先把点A坐标代入直线y=2x+3,得出m的值,然后得出点B的坐标,再代入直线y=﹣x+b解答即可.【题目详解】解:把A(﹣1,m)代入直线y=2x+3,可得:m=﹣2+3=1,因为线段OA绕点O顺时针旋转90°,所以点B的坐标为(1,1),把点B代入直线y=﹣x+b,可得:1=﹣1+b,b=2,故答案为:2【题目点拨】此题考查一次函数问题,关键是根据代入法解解析式进行分析.13、15【解题分析】

首先过D作直线AC的平行线DK,交l2于点N,再利用相似比例可得AC的长.【题目详解】解:过D作直线AC的平行线DK,交l2于点N故答案为15.【题目点拨】本题主要考查平行线的性质,再结合考查相似比例的计算,难度系数较小,关键在于作AC的平行线.14、1【解题分析】

根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【题目详解】根据题意得:,解得:,∴x+y=1,故答案是:1.【题目点拨】本题考查了非负数的性质:几个非负数的和为1时,这几个非负数都为1.15、1【解题分析】

将这7个数按大小顺序排列,找到最中间的数即为中位数.【题目详解】解:这组数据从大到小为:27,1,1,1,42,42,46,故这组数据的中位数1.故答案为1.【题目点拨】此题考查了折线统计图及中位数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算,难度一般.16、1.【解题分析】试题分析:由第一段函数得出进水速度是20÷4=5升/分,由第二段函数可算出出水速度是(8×5-10)÷(12-4)=20÷8=2.75升/分,利用两点坐标(4,20),(12,20)求出第二段函数解析式为y=x+1,则a点纵坐标是,由第三段图像即出水速度×出水时间=出水量,列方程得:=(24-a)×2.75,解得a=1.考点:一次函数的实际应用.17、1【解题分析】

如图,作PH⊥OB于H.由角平分线的性质定理推出PH=PD=3cm,再证明∠PCH=30°即可解决问题.【题目详解】解:如图,作PH⊥OB于H.∵∠POA=∠POB,PH⊥OB,PD⊥OA,∴PH=PD=3cm,∵PC∥OA,∴∠POA=∠CPO=15°,∴∠PCH=∠COP+∠CPO=30°,∵∠PHC=90°,∴PC=2PH=1cm.故答案为1.【题目点拨】本题考查角平分线的性质,平行线的性质,等腰三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.18、【解题分析】

因为所购买的件数x≥3,所以顾客所付款y分成两部分,一部分是3×80=240,另一部分是(x-3)×80×0.8,让它们相加即可.【题目详解】解:∵x≥3,∴y=3×80+(x-3)×80×0.8=64x+48(x≥3).故答案是:.【题目点拨】此题主要考查利用一次函数解决实际问题,找到所求量的等量关系是解决问题的关键.三、解答题(共66分)19、(Ⅰ)28.(Ⅱ)平均数是1.52.众数为1.8.中位数为1.5.(Ⅲ)200只.【解题分析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.20、(1)94,92.2,93;(2)见解析;(3)92.2.【解题分析】

(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值,求出九(2)班的众数确定出p的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;(3)用中位数作为一个标准即可衡量是否有一半学生达到优秀等级.【题目详解】解:(1)九(1)班的平均分==94,九(2)班的中位数为(96+92)÷2=92.2,九(2)班的众数为93,故答案为:94,92.2,93;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩集中在中上游;③九(2)班的成绩比九(1)班稳定;故支持B班成绩好;(3)如果九(2)班有一半的学生评定为“优秀”等级,标准成绩应定为92.2(中位数).因为从样本情况看,成绩在92.2以上的在九(2)班有一半的学生.可以估计,如果标准成绩定为92.2,九(2)班有一半的学生能够评定为“优秀”等级,故答案为92.2.【题目点拨】本题考查了平均数、中位数、众数以及方差的定义,属于统计中的基本题型,需重点掌握.21、(1)(2)(3)【解题分析】

(1)运用直接开平方法;(2)运用配方法;(3)运用公式法.【题目详解】解(1)(2)所以(3)因为a=1,b=-4,c=-7所以,所以【题目点拨】考核知识点:解一元二次方程.掌握各种方法是关键.22、(1)参加测试的有60人;(2)详见解析;(3)0.2.【解题分析】

(1)根据第五组的频数与频率可以求得该班参加测试的人数;(2)根据频率分布直方图可以求得第五组的频率,从而可以将统计图补充完整;(3)根据频率分布直方图中的数据可以求得该班成绩合格率.【题目详解】解:(1)1÷(1﹣0.05﹣0.15﹣0.30﹣0.35)=60(人)答:参加测试的有60人;(2)第五组的频率是:1﹣0.05﹣0.15﹣0.30﹣0.35=0.15,补全的频率分布直方图如图所示:(3)0.30+0.35+0.15=0.2,答:该班成绩合格率是0.2.【题目点拨】本题考查频率分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.23、(1)合作5天;(2)方案(C)既能如期完工,又节省工程款.【解题分析】

(1)设规定的工期为x天,根据题意得出的方程为:,可知被墨水污染的部分为:若甲、乙两队合作5天;(2)根据题意先求得规定的天数,然后算出三种方案的价钱之后,再根据题意选择既按期完工又节省工程款的方案.【题目详解】(1)根据题意及所列的方程可知被墨水污染的部分为:甲、乙两队合作5天.故答案是:甲、乙两队合作5天;(2)设规定的工期为x天,根据题意列出方程:,解得:x=1.经检验:x=1是原分式方程的解.这三种施工方案需要的工程款为:(A)2×1=60(万元);(B)1.5×(1+6)=54(万元),但不能如期完工;(C)2×5+1.5×1=55(万元).综上所述,(C)方案是既按期完工又节省工程款的方案:即由乙队单独完成这项工程.【题目点拨】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系;②列出方程;③解出分式方程;④检验;⑤作答.注意:分式方程的解必须检验.24、x2=-3,x2=-2【解题分析】

利用因式分解法解方程.【题目详解】解:(x+3)(x+2)=2,x+3=2或x+2=2,所以x2=-3,x2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论