版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州市宁都县2024届数学八年级第二学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在矩形ABCD中对角线AC、BD相交于点O,∠ACB=60°,则∠AOB的大小为()A.30° B.60° C.120° D.150°2.下列二次根式中,是最简二次根式的为()A. B. C. D.3.如图,一次函数的图象与两坐标轴分别交于、两点,点是线段上一动点(不与点A、B重合),过点分别作、垂直于轴、轴于点、,当点从点开始向点运动时,则矩形的周长()A.不变 B.逐渐变大 C.逐渐变小 D.先变小后变大4.如图,在□ABCD中,下列结论不一定成立的是()A.∠1=∠2 B.AD=DC C.∠ADC=∠CBA D.OA=OC5.如图,两个大小不同的正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,两个正方形重叠部分的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.6.在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A. B.4 C.4或 D.以上都不对7.已知点是平行四边形内一点(不含边界),设.若,则()A. B.C. D.8.不等式组的最小整数解是()A.0 B.-1 C.1 D.29.下列二次根式中,是最简二次根式的是()A. B. C. D.10.已知:如图,菱形中,对角线、相交于点,且,,点是线段上任意一点,且,垂足为,,垂足为,则的值是A.12 B.24 C.36 D.4811.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是()A. B.C. D.12.已知:以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,则这个三角形是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形二、填空题(每题4分,共24分)13.在一次越野赛跑中,当小明跑了1600m时,小刚跑了1450m,此后两人分别调整速度,并以各自新的速度匀速跑,又过100s时小刚追上小明,200s时小刚到达终点,300s时小明到达终点.他们赛跑使用时间t(s)及所跑距离如图s(m),这次越野赛的赛跑全程为m?14.顺次连接矩形ABCD各边中点,所得四边形形状必定是__________.15.如图,在中,,平分,点为中点,则_____.16.如图,在的边长为1的小正方形组成的网格中,格点上有四个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接__________________.(写出一个答案即可)17.如图,一次函数的图象与x轴、y轴分别交于点A、B,将沿直线AB翻折得到,连接OC,那么线段OC的长为______.18.已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是_____.三、解答题(共78分)19.(8分)如图,点E是平行四边形ABCD的边BC的中点,连接AE并延长交DC的延长线于点F,连接AC、BF,∠AEC=2∠ABC;(1)求证:四边形ABFC是矩形;(2)在(1)的条件下,若△AFD是等边三角形,且边长为4,求四边形ABFC的面积。20.(8分)先化简,再求值:(1),其中.(2),并在2,3,4,5这四个数中取一个合适的数作为的值代入求值.21.(8分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为多少;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.22.(10分)如图,是的直径,直线与相切于点,且与的延长线交于点,点是的中点.(1)求证:;(2)若,的半径为3,一只蚂蚁从点出发,沿着爬回至点,求蚂蚁爬过的路程,,结果保留一位小数).23.(10分)如图,在正方形网格中,每个小正方形的边长为1个单位长度。平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上。线段AB的两个端点也在格点上。(1)若将线段AB绕点O顺时针旋转90°得到线段A’B’。试在图中画出线段A’B’。(2)若线段A’’B’’与线段A’B’关于y轴对称,请画出线段A’’B’’。(3)若点P是此平面直角坐标系内的一点,当点A、
B’、B’’、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标。24.(10分)如图,在平面直角坐标系中,ΔABC的三个顶点都在格点上,点C的坐标为-3,3.(1)画出将ΔABC向右平移5个单位长度,再向上平移1个单位长度得到ΔA1B1(2)画出ΔA1B1C1关于原点O25.(12分)(1)解分式方程:(2)解不等式组,并把解集在数轴上表示出来.26.如图,△ABC中,AB=AC,∠A=50°,DE是腰的垂直平分线.求∠DBC的度数.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】
根据矩形的对角线互相平分且相等可得OB=OC,再根据等边对等角可得∠OBC=∠ACB,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【题目详解】解:∵矩形ABCD的对角线AC,BD相交于点O,
∴OB=OC,
∴∠OBC=∠ACB=60°,
∴∠AOB=∠OBC+∠ACB=60°+60°=120°.
故选C.【题目点拨】本题考查了矩形的性质,等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.2、C【解题分析】试题解析:A、,被开方数含分母,不是最简二次根式;B、,被开方数含能开得尽方的因数,不是最简二次根式;C、是最简二次根式;D、,被开方数含能开得尽方的因数,不是最简二次根式.故选C.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3、A【解题分析】
根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+1),根据矩形的周长公式即可得出C矩形CDOE=2,此题得解.【题目详解】解:设点的坐标为,,则,,,故选:.【题目点拨】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.4、B【解题分析】
根据平行四边形对边平行可得AD∥BC,进而有∠1=∠2,则A项正确;接下来对于其余三个选项,利用平行四边形的性质,分析图中相等线段和相等角,逐一验证即可.【题目详解】A,平行四边形对边平行,则AD∥BC,故有∠1=∠2,正确;B,平行四边形的邻边不一定相等,则AD=DC,错误;C,平行四边形的对角相等,则∠ADC=∠CBA,正确;D,平行四边形对角线互相平分,则OA=OC,正确.故选B.【题目点拨】本题考查平行四边形的性质,两组对边分别平行且相等,对角线互相平分5、C【解题分析】
小正方形运动过程中,y与x的函数关系为分段函数,即当0≤x<完全重叠前,函数为为增函数;当完全重叠时,函数为平行于x轴的线段;当不再完全重叠时,函数为为减函数.即按照自变量x分为三段.【题目详解】解:依题意,阴影部分的面积函数关系式是分段函数,
面积由“增加→不变→减少”变化.
故选C.【题目点拨】本题考查了动点问题的函数图象.关键是理解图形运动过程中的几个分界点.本题也可以通过分析s随x的变化而变化的趋势及相应自变量的取值范围,而不求解析式来解决问题.6、A【解题分析】解:∵∠C=90°,AC=5,BC=3,∴AB===.故选A.7、D【解题分析】
依据平行四边形的性质以及三角形内角和定理,可得θ2-θ1=10°,θ4-θ3=30°,两式相加即可得到θ2+θ4-θ1-θ3=40°.【题目详解】解:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=60°,∴∠BAM=60°-θ1,∠DCM=60°-θ3,∴△ABM中,60°-θ1+θ2+110°=180°,即θ2-θ1=10°①,△DCM中,60°-θ3+θ4+90°=180°,即θ4-θ3=30°②,由②+①,可得(θ4-θ3)+(θ2-θ1)=40°,;故选:D.【题目点拨】本题主要考查了平行四边形的性质以及三角形内角和定理等知识;熟练掌握平行四边形的对角相等是解题的关键.8、A【解题分析】
解:解不等式组可得,在这个范围内的最小整数为0,所以不等式组的最小整数解是0,故选A9、A【解题分析】
直接利用最简二次根式的定义分析得出答案.【题目详解】A.是最简二次根式,故此选项正确;B.,故此选项错误;C.,故此选项错误;D.,故此选项错误.故选A.【题目点拨】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.10、A【解题分析】
由菱形的性质可得AC⊥BD,AO=CO=3,BO=DO=4,通过证明△AFP∽△AOD,△PED∽△AOD,可得,,即可求解.【题目详解】解:四边形是菱形,,,,,,,故选:.【题目点拨】本题考查了菱形的性质,相似三角形的判定和性质,利用相似比求解是本题的关键.11、D【解题分析】试题分析:要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:①男女生共20人;②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.据此列出方程组:.故选D.考点:由实际问题抽象出二元一次方程组.12、A【解题分析】
根据题意得到a-b=0或b-c=0,从而得到a=b或b=c,得到该三角形为等腰三角形.【题目详解】解:因为以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,所以a﹣b=0或b﹣c=0,得到a=b或b=c,所以三角形为等腰三角形,故选:A.【题目点拨】本题考查等腰三角形,解题的关键是掌握等腰三角形的性质.二、填空题(每题4分,共24分)13、1.【解题分析】试题分析:设小明、小刚新的速度分别是xm/s、ym/s,然后根据100s后两人相遇和两人到达终点的路程列出关于x、y的二元一次方程组,求解后再根据小明所跑的路程等于越野赛的全程列式计算即可得解.试题解析:设小明、小刚新的速度分别是xm/s、ym/s,由题意得,由①得,y=x+1.5③,由②得,4y-3=6x④,③代入④得,4x+6-3=6x,解得x=1.5,故这次越野赛的赛跑全程=1600+300×1.5=1600+450=1m.考点:一次函数的应用;二元一次方程组的应用.14、菱形【解题分析】【分析】连接BD,AC,根据矩形性质和三角形中位线性质,可证四条边相等,可得菱形.【题目详解】如图连接BD,AC由矩形性质可得AC=BD,因为,E,F,G,H是各边的中点,所以,根据三角形中位线性质可得:HG=EF=BD,EH=FG=AC所以,EG=EF=EF=FG,所以,所得四边形EFGH是菱形.故答案为:菱形【题目点拨】本题考核知识点:矩形性质,菱形判定.解题关键点:由三角形中位线性质证边相等.15、1【解题分析】
根据等腰三角形的三线合一得到∠ADC=90°,根据直角三角形的性质计算即可.【题目详解】解:∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠ADC=90°,点E为AC中点,
∴DE=AC=1,
故答案为:1.【题目点拨】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.16、或【解题分析】
根据勾股定理求出AD(或BD),根据算术平方根的大小比较方法解答.【题目详解】由勾股定理得,AD=,3<<4,(同理可求BD=)故答案为:AD或BD.【题目点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.17、.【解题分析】
利用一次函数图象上点的坐标特征求得点A、B的坐标,易得线段AB的长度,然后利用面积法求得OD的长度,结合翻折图形性质得到.【题目详解】解:如图,设直线OC与直线AB的交点为点D,一次函数的图象与x轴、y轴分别交于点A、B,、,,,,将沿直线AB翻折得到,,,.故答案是:.【题目点拨】考查了一次函数图象与几何变换,此题将求线段OC的长度转换为求直角三角形AOB斜边上高的问题,降低了题目的难度.18、或【解题分析】
先根据面积求出三角形在y轴上边的长度,再分正半轴和负半轴两种情况讨论求解.【题目详解】根据题意,一次函数y=kx+b(k≠0)的图象与y轴交点坐标为(0,b),则×2×|b|=1,解得|b|=1,∴b=±1,①当b=1时,与y轴交点为(0,1),∴2k+1=0,解得k=-,∴函数解析式为y=-x+1;②当b=-1时,与y轴的交点为(0,-1),∴2k-1=0,解得k=,∴函数解析式为y=-x-1,综上,这个一次函数的解析式是或,故答案为:或.【题目点拨】本题考查了待定系数法求一次函数解析式,先根据三角形面积求出与y轴的交点,再利用待定系数法求函数解析式,本题需要注意有两种情况.三、解答题(共78分)19、(1)见解析;(2).【解题分析】
(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对顶角相等,利用ASA可得出三角形ABE与三角形FCE全等;进而得出AB=FC,即可得出四边形ABFC是平行四边形,再由直角三角形的判定方法得出△BFC是直角三角形,即可得出平行四边形ABFC是矩形.(2)由等边三角形的性质得出∠AFC=60°,AF=DF=4,得出CF=CD=2,由矩形的性质得出∠ACF=90°,得出AC=CF=2,即可得出四边形ABFC的面积=AC•CF=4.【题目详解】解:(1)∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(ASA);∴AE=EF,AB=CF,∴四边形ABFC是平行四边形,∵∠AEC=2∠ABC=∠ABC+∠BAE,∴∠ABC=BAE,∴AE=BE∵AE=EF,BE=CE,∴AF=BC,∴平行四边形ABFC是矩形;(2)∵△AFD是等边三角形,∴∠AFC=60°,AF=DF=4,∴CF=CD=2,∵四边形ABFC是矩形,∴∠ACF=90°,∴AC=CF=2,∴四边形ABFC的面积=AC•CF=.【题目点拨】此题主要考查了矩形的判定以及全等三角形的判定与性质等知识,根据已知得出AB=CF是解题关键.20、(1),;(2),时,原式.或(则时,原式)【解题分析】
(1)根据分式的运算法则把所给的分式化为最简分式后,再代入求值即可;(2)根据分式的运算法则把所给的分式化为最简分式后,再选择一个使每个分式都有意义的a的值代入求值即可.【题目详解】(1),当时,原式.(2)原式,∵、2、3,∴或,则时,原式.或(则时,原式)只要一个结果正确即可【题目点拨】本题考查了分式的化简求值,根据分式的运算法则把所给的分式化为最简分式是解决问题的关键.21、(1)享受9折优惠的概率为;(2)顾客享受8折优惠的概率为.【解题分析】
(1)由转动转盘甲共有四种等可能结果,其中指针指向A区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【题目详解】(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,∴享受9折优惠的概率为;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.【题目点拨】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.22、(1)见解析;(2)蚂蚁爬过的路程11.3.【解题分析】
(1)连接,根据切线的性质得到,证明,根据平行线的性质证明;(2)根据圆周角定理得到,根据勾股定理、弧长公式计算即可.【题目详解】解:(1)连接,直线与相切,,点是的中点,,,,,,;(2)解:,,由圆周角定理得,,,,,蚂蚁爬过的路程.【题目点拨】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长公式是解题的关键.23、(1)见解析;(2)见解析;(3)(3)P点坐标为(−4,1)、(4,1)、(0,−5).【解题分析】
(1)利用网格特点和旋转的性质画出点A、B的对应点A′、B′
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育心理学在防灾教育中的应用与创新策略
- 心理健康教育的现代发展学生幸福指数的促进因素
- 小学文言文教学中的学生自主学习能力培养
- 安全生产事故应急处置的实战经验分享
- 家长如何为孩子规划未来的职业发展路径
- 教育技术在职业培训领域的应用及趋势
- 工业展会的安全规范与责任边界
- 小学语文课程设计的多元化探索
- 教育心理学在学生思维培养中的应用
- 2025年度道路绿化景观设计施工协议范文集锦3篇
- 法律诉讼及咨询服务 投标方案(技术标)
- 一年级科学人教版总结回顾2
- 格式塔心理咨询理论与实践
- 精神发育迟滞的护理查房
- 有效排痰的护理ppt(完整版)
- 鲁教版七年级数学下册(五四制)全册完整课件
- 算法向善与个性化推荐发展研究报告
- 聚合物的流变性详解演示文稿
- 电气设备预防性试验安全技术措施
- 医院出入口安检工作记录表范本
- 内科学教学课件:免疫性血小板减少症(ITP)
评论
0/150
提交评论