版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
阜宁县陈集中学期末复习教学案(1)--轴对称与轴对称
图形
一、知识点:
1.什么叫轴对称:
如果把个图形沿着某条直线折叠后,能够与另一个图形重合,那么这两个图形关于
这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2.什么叫轴对称图形:
如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做
轴对称图形,这条直线叫做对称轴。
3.轴对称与轴对称图形的区别与联系:
区别:
①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图
形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是
反映一个图形的特性。
联系:
①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把
一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角
形、角、线段、相交的两条直线等。
4.线段的垂直平分线:/I
垂直并且平分一条线段的直线,叫做这条线段的垂直平5卜。
(也称线段的中垂线)人1
5.轴对称的性质:
⑴成轴对称的两个图形全等。
⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分
线。
6.怎样画轴对称图形:
画轴对称图形时,应先确定对称轴,再找出对称点。
二、举例:
例1:判断题:
①角是轴对称图形,对称轴是角的平分线;
()
②等腰三角形至少有1条对称轴,至多有3条对称轴;
()
③关于某直线对称的两个三角形一定是全等三角形;
()
④两图形关于某直线对称,对称点一定在直线的两旁。
()
例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号
中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.
例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下
图中添画一个小正方形使它成为一个轴对称图形:
士壮1七旺O
例4:如图,已知:AABC和直线/,请作出△ABC关于直线/的对
称三角形。
B
例5:如图,DA、CB是平面镜前同一发光点S发出的经平面镜反射
后的反射光线,请通过画图确定发光点S的位置,并将里路图补充完
整。7zB
例6:如图,四边形ABCO是长方形弹子球台面,
c_______________________D
有黑白两球分别位于E、尸两点位置上,试问怎
样撞击黑球E,才能使黑球先碰撞台边48反弹后一•「
再击中白球厂?AB
例7:如图,要在河边修建一个水泵站,向张庄A、李庄B送水。修
在河边什么地方,可使使用的水管最短?
A-
•B
例8:如图,OA、OB是两条相交的公路,点P是一个邮电所,现想
在OA、OB上各设立一个投递点,要想使邮电员每次投递路程最近,
问投递点应设立在何处?
.P
OB
三、作业:
1、如图表示长方形纸片ABCD沿对角线BD进行折叠后的情况,图
中有没有关于某条直线对称的图形?如有,请作出对称轴,图中是否
有相等的线段、相等的角(不含直角)?如有,请写出相等苗L线段、
AD
相等的角.并说明理由。
B
2、如图,Z\ABC中,ZC=90°o
c
⑴在BC上找一点D,使点D到AB的距离等于DC的》於、
⑵连结AD,画一个三角形与4ABC关于直线AD内/B
3、如图,A、B是直线L同侧的两定点,定长线段PQ在L上平行移
动,问PQ移动到什么位置时,AP+PQ+QB的长最短?(画出图形,
不要说明理由)
B
A
a
p0
阜宁县陈集中学期末复习教学案⑵……线段、角的轴对
称性
一、知识点:
1.线段的轴对称性:
①线段是轴对称图形,对称轴有两条;
另一条是这条线段的垂直平分线。
②线段的垂直平分线上的点到线段两端的距离相等。
③到线段两端距离相等的点,在这条线段的垂直平分线上。
结论:线段的垂直平分线是到线段两端距离相等的点的集合
2.角的轴对称性:
①角是轴对称图形,对称轴是角平分线所在的直线。
②角平分线上的点到角的两边距离相等。
③到角的两边距离相等的点,在这个角的平分线上。
结论:角的平分线是到角的两边距离相等的点的集
二、举例:
例1:已知AABC中,AB=AC=10,DE垂直平分AB,交AC于E,已
知ABEC的周长是16。求AABC的周长.
例2:如图,已知NAOB及点C、D,求作一点P,使PC=PD,并且
使点P到OA、OB的距离相等。
例3:如图,已知直线/及其两侧两点A、Bo
(1)在直线/上求一点P,使PA=PB;
B
(2)在直线/上求一点Q,使/平分NAQB。
例4:如图,直线a、b、c表示三条相互交叉的公路,现要建一个货
物中转站,要求它到三条公路的距离相等,可供选择的地址有几处?
如何选?
例5:已知:如图,在AABC中,O是NB、NC外角的平分线的交
点,那么点O在NA的平分线上吗?为什么?
例6:如图,已知:AD和BC相交于O,Z1=Z2,Z3=Z4o试判
断AD和BC的关系,并说明理由。
O/D
B
例7:已知:如图,AABC中,BC边中垂线ED交BC于E,交BA
延长线于D,过C作CFJ_BD于F,交DE于G,DF」BC,试说明
2
ZFCB=1ZB
2
例8:已知:在NABC中,D是NABC平分线上一点,E、F分别在
AB、AC±,且DE=DF。试判断NBED与NBFD的关系,并说明理
由.
三、作业:
1、(1)如图(一),P是NAOB平分线上一点,试过点P画一条直
线,交角的两边于点C、D,使AOCD是等腰三角形,且CD是
底边;
(2)若点P不在角平分线上,如图(二),如何过点P
画直线与角的两边相交组成等腰三角形?
(3)问题(2)中能画出儿个满足条件的等腰三角形?
2、已知:在△ABC中,D是BC上一点,DE_LBA于E,DF±AC
于F,且DE=DF.°试判断线段AD与EF有何关系?并说明理由。
3、如图,已知:在4ABC中,NBAC=90。,BD平分/ABC,DE
_LBC于E。试说明BD垂直平分AE
C
阜宁县陈集中学期末复习教学案⑶.....等腰三角形的
轴对称性
一、知识点:
3.等腰三角形的性质:
①等腰三角形是轴对称图形,顶角平分线所在直线是它的对称
轴;
②等腰三角形的两个底角相等;(简称“等边对等角”)
③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重
合。(简称“三线合一”)
4.等腰三角形的判定:
①如果一个三角形有2个角相等,那么这2个角所对的边也相等;
(简称“等角对等边”)
②直角三角形斜边上的中线等于斜边上的一半。
3.等边三角形:
①等边三角形的定义:
三边相等的三角形叫做等边三角形或正三角形。
②等边三角形的性质:
等边三角形是轴对称图形,并且有3条对称轴;
等边三角形的每个角都等于60%
③等边三角形的判定:
3个角相等的三角形是等边三角形;
有两个角等于60°的三角形是等边三角形;
有一个角等于60°的等腰三角形是等边三角形。
4.三角形的分类:
C斜三角形:三边都不相等的三角形。
三附形「只有两边相等的三角形。
〔等腰中角形
等边三角形
二、举例:
例1、如图,已知D、E两点在线段BC上,AB=AC,AD=AE,试
说明BD=CE的理由?
cr1
例2:如图,已知:Z\ABC中,AB=AC,BD和CE分别是NABC
和NACB的角平分线,且相交于O点。①试说明aOBC是等腰三角
例3:如图,已知:AD和BC相交于O,Z1=Z2,N3=N4。试判
断AD和BC的关系,并说明理由。
B
例4:如图,已知:AABC中,ZC=90°,D、E是AB边上的两点,
且AD=AC,BD=BC。
求NDCE的度数。
例5:如图,已知:^ABC中,BD、CE分别是AC、AB边上的高,
G、F分别是BC、DE的中点。试探索FG与DE的关系。
D
BGC
例6:如图,已知:^ABC中,NC=90°,AC=BC,M是AB的中
点,DE_LBC于E,DF_LAC于F。试判断aMEF的形状?并说明理
由。
例7:如图,已知:AABC为等边三角形,延长BC到D,延长BA
至IjE,AE=BD,连结EC、ED,试说明CE=DE。
例8:如图,在等边AABC中,P为AABC内任意一点,PDJ_BC于
D,PEJ_AC于E,PF_LAB于F,AMLBC于M,试猜想AM、PD、
PE、PF之间的关系,并证明你的猜想.
三、作业:
1、如图,在AABC中,ZACB=90°,高CD和角平分线AE交于
点F,EH_LAB于点H,那么CF=EH吗?说明理由。
2、如图,4ABE和4ACE都是等边三角形,BD与CE相交于点O。
(1)EC=BD吗?为什么?若BD与CE交于点O,你能求出NBOC
的度数是多少吗?
(2)如果要4ABE和4ACD全等,则还需要什么条件?在此条件下,
整个图形是轴对称图形吗?此时NBOC的度数是多少?
D
3、如图,已知:4ABC是等边三角形,且AD=BE=CF,那么△
DEF是等边三角形吗?
阜宁县陈集中学期末复习教学案(4)...........等腰梯形的
轴对称性
一、知识点:
5.等腰梯形的定义:
①梯形的定义:一组对边平行,另一组对边不平行为梯形。
梯形中,平行的一组对边称为底,不平行的一组对边称为腰。
②等腰梯形的定义:两腰相等的梯形叫做等腰梯形。
6.等腰梯形的性质:/^\\
①等腰梯形是轴对称图形,是两底中点的连线所在薪“。7c
②等腰梯形同一底上两底角相等。
③等腰梯形的对角线相等。
3.等腰梯形的判定:
③在同一底上的2个底角相等的梯形是等腰梯形。
④补充:对角线相等的梯形是等腰梯形。
二、举例:
例1:填空:
1、等腰梯形的腰长为12cm,上底长为15cm,上底与腰的夹角为120
°,则下底长为—cm.
2、如果一个等腰梯形的二个内角的和为100°,那么此梯形的四个
内角的度数分别为.
3、等腰梯形上底的长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是;
4、已知等腰梯形的一个底角等于60°,它的两底分别为13cm和37cm,它的周长为;
5、如图,在梯形ABCD中,AD〃BC,AB=CD,ZA=120°,对
角线BD平分NABC,贝)7(
NBDC的度数是;又若AD=5,PliJBC-\
6、如图,在等腰梯形ABCD中,AD〃BC,AB=AD,BD=BC,
则/C=%
例2:如图,等腰梯形ABCD中,AD〃BC,对角线AC、BD相交于
点O.试说明:AO=DO.
例3:如图,梯形ABCD中,AD//BC,AC=BD。试说明:梯形ABCD
是等腰梯形。
例4:如图,在等腰梯形ABCD中,AD〃BC,AD=3cm,BC=7cm,
E为CD的中点,四边形ABED的周长比4BCE的周长大2cm,试
求AB的长.
例5:如图,在等腰梯形ABCD中,AD〃BC,AB=CD,M为BC中
点,则:
(1)点M到两腰AB、CD的距离相等吗?请说出你的理由。
(2)若连结AM、DM,那么aAMD是等腰三角形吗?为什么?
(3)又若N为AD的中点,那么MN_LAD一定成立.你能说明为
什么吗?
例6、如图,在等腰梯形ABCD中,AD〃BC,AB=CD,E为CD
中点,AE与BC的延长线交于F.
(1)判断SAABF和S梯形ABCD有何关系,并说怫||”
(2)判断S*BE和S梯形ABCD有何关系,并说放理理*
(3)上述结论对一般梯形是否成立?为什么?
例7、如图,在梯形ABCD中,AD//BC,E为CD的中点,AD+BC
=AB.贝lj:
(1)AE、BE分别平分NDAB、NABC吗?为什么?
(2)AE±BE吗?为什么?
例8:在梯形ABCD中,ZB=90°,AB=14cm,AD=18cm,BC
=21cm,点P从点A开始沿AD边向点D以1cm/s的速度移动,点
Q从点C开始沿CB向点B以2cm/s的速度移动,如果点P、Q分别
从两点同时出发,多少秒后,梯形PBQD是等腰梯形?
三、作业
1、如图,等腰梯形ABC中,AD//BC,AB=CD,DE_LBC于E,AE=BE,
BF±AE于F,请你判断线段BF与图中的哪条线段相等,人先写出你
的猜想,再说明理由。
2、如图,四边形ABCD是等腰梯形,BC〃AD,AB=RC,BC=2AD
=4cm,BD±CD,AC1AB,BC边的中点为E.
(1)判断4ADE的形状(简述理由),并求其周长.口「,
⑵求AB的长.
(3)AC与DE是否互相垂直平分?说出你的理由.
3、如图,在梯形ABCD中,AB//DC,AD=BC,AB=10,CD=4,
延长BD到E,使DE=DB,作EF±AB交BA的延氐线于F,求AF.
R
阜宁县陈集中学期末复习教学案⑸--勾股定理、勾股
定理的应用
一、知识点:
1、勾股定理:口、
直角三角形两直角边的平方和等于斜边的平方
数学式子:厂uA
NC=90°na2+b2=c2
2、神秘的数组(勾股定理的逆定理):
如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角
形是直角三角形.
数学式子:
«2+&2=c2^ZC=90°
满足a+/=c>三个数a、b、c叫做勾股数。
二、举例:
例1:⑴一个直角三角形的两条直角边分别为3和4,求斜边的长度
⑵一个直角三角形一条直角边为6,斜边为10,求另一条直角
边
例2:在AABC中,AB=13,AC=15,BC=14,。求BC边上的高AD。
例3:在4ABC中,AB=15,AC=20,BC边上的高AD=12,试求
BC的长.(两解)
例4:如图,在aABC里,AC=AB,D是BC上的一点,AD_LAB,
AD=9cm,BD=15cm,求AC的长.
例5:一轮船在大海中航行,它先向正北方向航行8km,接着,它又
掉头向正东方向航行15千米.(1)此时轮船离开出发点多少km?⑵
若轮船每航行1km,需耗油0.4升,那么在此过程中轮船共耗油多少
升?
例6:如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,
现将直角边AC沿直线折叠,使它落在斜边AB上,且点C落到E点,
则CD的长是多少?
例7:如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,Z
B=90°,求四边形ABCD的面积。
例8:有一根70cm的木棒,要放在50cm,40cm,30cm的木箱中,
试问能放进去吗?
例9:甲、乙两人在沙漠进行探险,某日早晨8:00甲先出发,他以
6千米/时速度向东南方向行走,1小时后乙出发,他以5千米/时速度
向西南方向行走,上午10:00时,甲、乙两人相距多远?
例10:如图,由5个小正方形组成的十字形纸板,现在要把它剪开,
使剪成的若干块能够拼成一个大正方形。
(1)如果剪4刀,应如何剪拼?
(2)少剪儿刀,也能拼成一个大正方形吗?
三、作业:
1、RtaABC中,ZC=90°
⑴如果BC=9,AC=12,那么AB=°
⑵如果BC=8,AB=10,那么AC=o
⑶如果AC=20,BC=25,那么AB=。
⑷如果AB=13,AC=12,那么BC=°
⑸如果AB=61,BC=11,那么AC=o
2、若直角三角形两直角边长分别为5和12,求其斜边上的高为。
3、若直角三角形的三边分别为x,6,8,求%的值。
4、已知:等边三角形ABC的边长为6cm,求一边上的高和三角形
的面积。
5、等腰三角形ABC的腰长为10,底边上的高为6,则底边的长为多
少?
阜宁县陈集中学期末复习教学案⑹.....平方根、立方
根
一、知识点:
1、什么叫做平方根?
如果一个数的平方等于9,这个数是儿?
±3是9的平方根;9的平方根是±3。
一般地,如果一个数的平方等于那么这个数叫做的。平方根,
也称为二次方根。
数学语言:如果/=〃,那么X就叫做。的平方根。
4的平方根是_____;-的平方根是_______o_______________的平方根
49
是0.81。
如果-=25,那么x=o2的平方根是?
2、平方根的表示方法:
一个正数。的正的平方根,记作“右”,正数。的负的平方根记
作“-布”。
这两个平方根合起来记作“土耳”,读作“正,负根号.
±囱表示,±79=o2的平方根是;如果
2
X=2,那么x=o
3、平方根的概念:
一个正数的平方根有2个,它们互为相反数;
。只有1个平方根,它是0本身;
负数没有平方根。
求一个数的平方根的运算叫做开平方。
4、算术平方根:
正数有两个平方根,其中正数的正的平方根,叫的算术平方
根.
例如,4的平方根是±2,2叫做4的算术平方根,记作"=2;
2的平方根是士VL上叫做2的算术平方根,记作后=2。
5、算术平方根的性质:
(1)Go;右中被开方数此0。
(2)-a(a20),--a(a<0)>(4a~)2=a(a20)
6、什么叫做立方根?
一般地,如果一个数的立方等于。,那么这个数就叫做。的立方
根,也称为三次方根。即如果1=%那么x就叫做。的立方根。记为
后,读作“三次根号。.
7、立方根的概念:
正数的立方根是正数,负数的立方根是负数,0的立方根是0本
身。互为相反数的两个数的立方根也互为相反数。求一个数的
立方根的运算叫做开立方。
二、举例:
例1:填空题:
⑴16的平方根是;25的平方根是;竺的平方
---------------------49
根是;
2.56的平方根是;(-2/的平方根是;IO2的平方
根是。
(2)±736=;±>0.01=;±J=o
⑶Jo.oi=;(Vs)2=;=;
V16^=;7(-16)2=;J(_5)2=°
⑷一个数的平方等于它本身,这个数是;一个数的平方根等于
它本身,这个数是;一个数的立方根等于它本身,这个数
是;
⑸若3«+1没有算术平方根,则a的取值范围是o若
3x-6总有平方根,则x的取值范围是o若式子X一:的平方
根只有一个,则无的值是o
(6)若4a+l的平方根是±5,则a=。若
=16,则5-耶J算术平方根是o
⑺一个正数的两个平方根为m+1和m—3,则m=,
(8)若y[a=1.2,则q=;若=2,则m;
⑼若y/a-4+1/?-9|=0,贝心=o
⑩已知X,y都是实数,且y=Jx-2+j2-x+3,试求xY的值.
例2:选择题
1、下列说法正确的是()
A、-8是64的平方根,即闹=-8B、8是(-力的算术平方根,即
7(-8)2=8
C、±5是25的平方根,即土居=5D、±5是25的平方根,即后=±5
2、下列计算正确的是()A、、启=)B、用=21C、
V164V22
V025=0.05D^-7^25=5
3、庖的算术平方根是()/、土9B、9C、±3
D、3
4、下列说法错误的是()
A、6是3的平方根之一B、百是3的算术平方根
C、3的平方根就是3的算术平方根D、的平方是3
例3:求下列方程中的x的值
(1)x?=25(2)/=-工^(3)(2x—3)'=36
216
(4)(x-3丫=-1(5)9(y+2)2-16=0(6)(x—3)'-3
例4:已知aABC的三边分别是a、b、c,且满足疝彳+r—4b+4=0,
求c的取值范围。
例5:已知“-),+3与Jx+y-1互为相反数,求(x-),)2的平方根。
例6:若a,b为有理数,且有a,b满足a?+2b+^b=17—40,
求a+b的值.
例7:某纸箱加工厂,有一批边长为40cm的正方形硬纸板,现准备
将此纸板折成没盖的纸盒。首先在四个角上截去四个相同的小正方
形,然后做成底面积为625cm②的纸盒子,想一想,你怎样求出截去
的小正方形的边长?
例8:提图题:
(1)加_2|+(3"+'2<?_5=0,求/+3b—2c的值;
VX2-16+V16-X2+1
(2)已知y=,求2x+5yo
y/x+4
三、作业:
1、填空题:
(1)36的倒数的算术平方根的相反数是.
⑵而T+2的最小值是,此时。的取值是.
⑶2x+l的算术平方根是2,x=.
⑷如果%的一个平方根是7.12,那么另一个平方根是_______.
⑸一个正数的两个平方根的和是_______.⑹一个正数的两个
平方根的商是
(7)如果凶=9,那么%=;如果X2=9,那么X=(8)
3x+3
当x=2时,
(x-1)2
2、选择题:
⑴下列说法正确的是().
A.-81的平方根是±9
B.任何数的平方是非负数,因而任何数的平方根也是非负数
C.任何一个非负数的平方根都不大于这个数
D.2是4的平方根
⑵VI石的平方根是().A.±12B.12C-12
D.±712
⑶下列各数没有平方根的是().A.18B.(-3月
C.7(-^D.11.1
⑷如果反再有意义,则%可以取的最小整数为().A.0
B.1C.2D.3
⑸7^的值是()•A.-3B.3C.-9D.9
⑹下列说法不正确的是().
A.土也表示两个数:桓或-叵B.在数轴上表示正数的两个平
方根的两个点,总是关于原点对称
C.正数的两个平方根的积为负数D.当的指数是2
3、计算:
⑷—炉+在
(2)4749(3)716-781
V16
4、求下列各式中%的值.
⑴/-25=0(2)4(X+1)2=81⑶4x2=64(4)—-98=0
2
5、解答题:
⑴已知2a-1的平方根是±3,3,a+b-1的平方根是±4,求a和b的
值。
⑵若J2a2_8=0,求a、b的值。
阜宁县陈集中学期末复习教学案(7)…实数、近似数
与有效数字
一、知识点:
1、什么是有理数?
整数和分数统称有理数。
2、痣是一个什么数?
问题1:&是有理数吗?
问题2:痣是一个整数吗?
问题3:拉是1与2之间的一个分数吗?
问题4:行有多大?
V2是一个无限不循环小数,它的值为1.141213562373095048
8016887242097-
3、什么是实数?
无限不循环小数是无理数。
有理数和无理数统称实数。
常见的无理数有:⑴无限不循环小数:如0.010010001……
⑵开不尽的根号:如百、&网、汨
等
(3)圆周率左:如%-3.14、一等。
3
「整如
有理数{H部艮小数和无限循明、数)
r1分数J
实数4
无理数(无限不循环<1领)
4、近似数的认识:
实际生产生活中的许多数据都是近似数,例如测量长度,时间,
速度所得的结果都是近似数,且由于测量工具不同,其测量的精确程
度也不同。在实际计算中对于像n这样的数,也常常需取它们的近似
值.请说说生活中应用近似数的例子。
取一个数的近似值有多种方法,四舍五入是最常用的一种方法。
用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近
似数精确到哪一位。
例如,圆周率n=3.1415926…
取几心3,就是精确到个位(或精确到1)
取ng3.1,就是精确到十分位(或精确到0.1)
取ng3.14,就是精确到百分位(或精确到0.01)
取门心3.142,就是精确到千分位(或精确到0.001)
2、有效数字:
对一个近似数,从左面第一个不是0的数字起,到末位数字止,
所有的数字都称为这个近似数的有效数字。
例如:上面圆周率n的近似值中,3.14有3个有效数字3,1,
4;
3.142有4个有效数字3,1,
4,2.
二、举例:
例1:把下列各数填入相应的集合内:
31、"、0、历、工、0.5、3.14159、-0.0200200020.12121121112-
23
(1)有理数集合{}
(2)无理数集合{}
(3)正实数集合{}
(4)负实数集合{}
例2:小亮用天平称得罐头的质量为2.026kg,,按下列要求取近似数,
并指出每个近似数的有效数字:
⑴精确到0.01kg;⑵精确到0.1kg;⑶精确到1kg.
例3:用四舍五入法,按要求取近似值,并用科学记数法表示.
⑴地球上七大洲的面积约为149480000(保留2个有效数字)
⑵某人一天饮水1890m1(精确到1000ml)
⑶小明身高L595m(保留3个有效数字)
⑷人的眼睛可以看见的红光的波长为0.000077cm(精确到0.00001)
例4:下面由四舍五入法得到的近似数,分别精确到哪一位?各有儿
个有效数字?
⑴小明身高1.59m;
⑵地球的半径约为6.4X103;
⑶组成云的小水滴很小,最大的直径约为0.2mm;
⑷某种电子显微镜的分辨率为1.4X108;
例5:若6-4x+4+|y2—2xI=0。求x—y的值。
例6:若a=Vn—1,求a5+2a4—17a3—a2+18a—17的值
例7:已知根是抽的整数部分,〃是痴的小数部分,求/—〃2的值。
三、作业:
1、把下列各数填入下列相应的集合中:
-8.6,9,J-,—,V64,0.99,-Ji,0.76
V39
(1)有理数集合:{}
(2)无理数集合:{)
(3)正实数集合:{)
(4)负实数集合:{}
2、化简卜-阕+2-闽+2-2|
3、已知所的整数部分为a,小数部分为b。求a—b。
4、我国自行研制的“神舟”五号载人飞船于二OO三年十月十五日
成功发射,并环绕地球飞行约590520km,请将这一数字用科学记数
法表示出来。(要求保留一位有效数字)。
5、有一个四位数X,先将它四舍五入到十位,得到近似数m,再把
四位数m四舍五入到百位,得到近似数n,再把四位数n四舍五入到
千位,恰好是2000,你能求出四位数x的最大值与最小值吗?
阜宁县陈集中学期末复习教学案(8)…中心对称与中心
对称图形
一、知识点:
1、图形的旋转:
在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形
运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转
角。旋转前、后的图形全等。对应点到旋转中心的距离相等。每一对
对应点与旋转中心的连线所成的角彼此相等。
2、中心对称:
把一个图形绕着某一个点旋转180°,如果它能够与另一个图形
重合,那么称这两个图形关于这一点对称。也彳——7W
称,这个点叫做对称中心,两个图形中的对应/一
注意:①中心对称是旋转的一种特例,因此,
成中心对称的两个图形具有旋转图形的一切性质。
②成中心对称的2个图形,对称点的连线都经过对称中心,
并且被对称中心平分。
3、中心对称图形:
把一个平面图形绕着某一点旋转180°,如果旋转后的图形能够
和原来的图形互相重合,那么这个图形叫做中心对称图形。这个点就
是它的对称中心。
中心对称图形上的每一对对应点所连成的线段都被对称中心平
分。
4、中心对称与中心对称图形之间的关系:
区别:(1)中心对称是指两个图形的关系,中心对称图形是指具有某
种性质的图形。(2)成中心对称的两个图形的对称点分别在两个图形
上,中心对称图形的对称点在一个图形上。
联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;
若把中心对称的两个图形看成一个整体,则成为中心对称图形.
5、对比轴对称图形与中心对称图形:
轴对称图形中心对称图形
有一条对称轴—直线有一个对称中心——点
沿对称轴对折绕对称中心旋转180°
对折后与原图形重合旋转后与原图形重合
二、举例:
例1:如图,将点阵中的图形绕点O按逆时针方向旋转90°,画出旋
转后的图形.
例2:画出将AABC绕点。按顺时针方向旋转120°后的对应三角形。
例3:如图,已知AABC是直角三角形,BC为斜边。若AP=3,将
△ABP绕点A逆时针旋转后,能与AACP'重合,求PP'的长。
例4:如图AC=BD,NA=NB,点E、F在AB上,且DE〃CF,
试说明此图是中心对称图形的理由。
C
A
E
B
D
例5:已知:如图,在AABC中,ZBAC=120°,以BC为边向形外
作等边三角形^BCD,把4ABD绕着点D按顺时针方向旋转60°后
得到aECD,若AB=3,AC=2,求NBAD的度数与AD的长.
例6:如图,直线hJ_12,垂足为O,点A1与点A关于直线h对称,
点A2与点A关于直线12对称。点A1与点A2有怎样的对称关系?你
能说明理由吗?
用
,fI
------7^~1-----li
/\;1
A,十一'A
三、作业:
1、画出等腰RtAABC绕点C逆时针旋转90。后的图形。八
2、在等腰直角△ABC中,ZC=90°,BC=2cm,如果以AC的中点O
为旋转中心,将这个三角形旋转180°,点B落在点B,处,求BB'
的长度.
AB
3、如图,在四边形ABCD中AB〃CD、AD〃BC,这个四边形是中
心对称图形吗?如果是,找出它的对称中£
4、如图是一个平行四边形土地ABCD,后来在其边缘挖了一个小平
行四边形水塘DFGH,现准备将其分成两块,并使其满足:两块地的
面积相等,分割线恰好做成水渠,便于灌溉,请你在图中画出分界线
(保留作图痕迹),简要说明理由.
D
B
阜宁县陈集中学期末复习教学案⑼......平行四边形
一、知识点:
AD
1、平行四边形的定义://
2组对边分别平行的四边形叫做平行四边形。B
记作:ZZ7ABCD,读作平行四边形ABCD.
平行四边形是中心对称图形,对角线的交点是它.一……、、
,/、、
的对称中心。/
2、平行四边形的性质:BC
①平行四边形的对边平行;
②平行四边形的对边相等;
③平行四边形的对角相等;
④平行四边形的对角线互相平分。
3、平行四边形的判定:
①2组对边分别平行的四边形是平行四边形;
②2组对边分别相等的四边形是平行四边形;
③2组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形。
二、举例:
例1:如图,DABCD中,E、F分别是BC和AD边上的点,且BE=DF,
请说明AE与CF的关系,并说明理由。
例2:如图,AABCD的对角线AC、BD相交于点O,过点O的直
线与AD、BC分别相交于点E、Fo试探求OE与OF是否相等,并
且说明理由。
例3:如图,在6BCD中,AE±BD,CF±BD,垂足分别是E、F,
A_■
四边形AECF是平行四边形吗?为什么?
E
B
例4:如图,在。ABCD中,点E、F在AC上,且AF=CE,点G、
H分别在AB、CD上,且AG=CH,AC与GH相交于点O,
试说明:(1)EG〃FH,(2)GH、EF互相平分。
例5:如图,在平行四边形ABCD中,点E在AC上,AE=2EC,点
F在AB上,BF=2AF,如果ABEF的面积为2cm2,求平行四边形ABCD
的面积。
例6:在四边形ABCD中,AD〃BC,且AD>BC,BC=6cm,P、Q
分别从A、C同时出发,P以Icm/s的速度由A向D运动,Q以2cm/s
的速度由C出发向B运动,儿秒后四边形ABQP是平行四边形?
<—
例7:已知:如图,分别以AABC的三边为其中一边,在BC的同侧
作三个等边三角形:AABD.ABCE>AACFO求证:AE、DF互相
平分。
三、作业:
1、如图,在四边形ABCD中,AB〃CD,ZA=ZC,四边形ABCD
是平行四边形吗?为什么?
2、0ABCD的对角线相交于点O,E、F分别是OB、OD的中点,
四边形AECF是平行四边形吗?为什么?
A
'D
B
3、如图,为公园的一块草坪,其四角上各有一棵树,现园林工人想使这
个草坪的面积扩大一倍,又要四棵树不动,并使扩大后的草坪为平行
四边形,试问这个想法能否实现,若能请你设计出草图,否则说明理
由.
阜宁县陈集中学期末复习教学案(10)……矩形、菱形、正
方形
一、知识点:
1、矩形的定义:
有一个角是直角的平行四边形叫做矩形,通常也叫长方形。
2、矩形的性质:
①矩形是特殊的平行四边形,它具有平行四边形的一切性质;
②矩形既是轴对称图形也是中心对称图形,对称轴是对边中点
连线所在直线,有两条,对称中心是对角线的交点。
③矩形的对角线相等;
n一
④矩形的四个角都是直角。
3、矩形的判定:
①有一个角是直角的平行四边形是矩形;
②对角线相等的平行四边形是矩形;
③有3个角是直角的四边形是矩形。
4、菱形的定义:
有一组邻边相等的平行四边形叫做菱形。
5、菱形的性质:
①菱形是特殊的平行四边形,它具有平行四边形的一切性质;
②菱形既是轴对称图形也是中心对称图形,对称轴是两条对角
线所在直线,对称中心是对角线的交点。人
③菱形的四条边相等;
④菱形的对角线互相垂直,并且每一条对角线
平分一组对角。C
6、菱形的判定:
①有一组邻边相等的平行四边形是菱形;
②四边都相等的四边形是菱形;
③对角线互相垂直的平行四边形是菱形。
7、菱形的面积:A_______
s菱WAC・BD
8、正方形的定义:/、
B
有一组邻边相等并且有一个角是直角的平行四边形叫做正方
形。
9、正方形的性质:
①正方形具有矩形的性质,同时又具有菱形的性质。
②正方形既是轴对称图形也是中心对称图形,对称轴有四条,对
称中心是对角线的交点。
10、正方形的判定:
①有一组邻边相等并且有一个角是直角的平行四边形是正方形;
②有一组邻边相等矩形形是正方形;
③有一个角是直角的菱形是正方形。
11、平行四边形、矩形、菱形、正方形之间的关系:
祖邻边相等并n有个斯足直角
二、举例:
例1:如图,矩形ABCD的对角线相交于点O,AB=4cm,ZAOB
=60°o
(1)求对角线AC的长;(2)求矩形ABCD的周长
例2:如图,在矩形ABCD中,CEJLBD,E为垂足,ZDCE:ZECB
=3:lo求NACE的度数。
例3:如图,在矩形ABCD中,点E在AD上,EC平分NBED。
(1)4BEC是否为等腰三角形?为什么?
(2)若AB=1,ZABE=45°,求BC的长
例4:如图,平行四边形ABCD中,4个内角平分线围成的四边形PQRS
是矩形吗?说说你的理由。
例5:已知:如图,菱形ABCD的周长为8cm,ZABC:ZBAD=1:
2,对角线AC、BD相交于点O,求AC的长及菱形的面积。
例6:如图,在四边形ABCD中,AD〃BC,对角线AC的垂直平分
线与边AD、BC分别相交于点E、F。四边形AFCE是菱形吗?为什
么?
AFn
Q
B'EC
例7:如图,在/ABC中,ZC=90°,NBAC、NABC的角平分线
交于点D,DE_LBC于E,DFJLAC于F。问四边形CFDE是正方
形吗?请说明理由。
例8:如图,C是线段AB上一点,分别以AC、BC为边在线段AB
同侧作正方形ACDE和BCFG,连接AF、BD.
⑴AF与BD是否相等?为什么?
⑵如果点C在线段AB的延长线上,⑴中的结论是否成立?
请作图,并说明理由.
三、作业:
1、如图,矩形ABCD中,AE平分NBAD,交BC于E,对角线AC、
BD交于O,若NOAE=15°。(1)试说明:OB=BE;(2)求NBOE
的度数.
2、如图,将矩形ABCD沿着直线BD折叠使点C落在点C处,
AB=4,求aBED的面积。
3、已知:如图,AABC中,ZACB=90°,CD是高,AE是角平分
线,交CD于点F,
EG±AB,G为垂足。试说明四边形CEGF是菱形。
阜宁县陈集中学期末复习教学案(11)..........三角形、梯形
的中位线
一、知识点:
1、三角形的中位线:
⑴连结三角形两边中点的线段叫做三角形的
中位线.
区别三角形的中位线与三角形的中线。
⑵三角形中位线的性质
三角形的中位线平行于第三边并且等于它的一半.
2、梯形的中位线:
⑴连结梯形两腰中点的线段叫做梯形的中位
线。
注意:中位线是两腰中点的连线,而不是两底中点的连线。
⑵梯形中位线的性质
梯形的中位线平行于两底,并且等于两底和的一半。
二、举例:
例1:如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、、
D
Aa
DA的中点。四边形EFGH是平行四边形吗?为什方六
E.G
BFC
例2:如图,矩形A8CO的对角线相交于点。,点反F、G、”分别
是OA、OB、0C.。。的中点,四边形ErG”是矩形吗?为什么?
例3:已知:如图,AD是AABC的中线,E、G分别是AB、AC的
中点,GF〃AD交ED的延长线于点F。
⑴猜想:EF与AC有怎样的关系?
⑵试证明你的猜想。
cF
例4:已知在△ABC中,ZB=2ZC,AD,BC于D,M为BC的中
点。试说明DM*AB
例5:等腰梯形ABCD中,AD〃BC,EF为中位线,EF=18,AC±
AB,ZB=60°,求梯形ABCD的周长及面积。
BC
例6、已知:如图,在梯形ABCD中,AD〃BC,ZABC=90°,E
是梯形外一点,且AE=BE,F是CD的中点。试说明:EFZ/BCo
例7:如图,在梯形ABCD中,AD〃BC,M、N分别是两条对角线
BD、AC的中点,试说明:MN〃:BC且MN=g(BC—AD)。
例8:已知:如图,四边形ABCD为等腰梯形,AD〃BC,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度股权投资合同投资金额及投资期限
- 二零二四年度采购代理合同服务内容详细
- 2024年度电梯安装工程保险服务协议3篇
- 2024年度建筑工程项目风险评估与管理合同
- 二零二四年度软件开发与代工服务合同
- 二零二四年度能源供应合同.风能发电项目合作开发
- 二零二四年度出版发行担保合同
- 店铺转租合同范本
- 二零二四年度软件开发与技术授权合同
- 二零二四年风力发电项目开发合同
- 《WS/T 367-2012 医疗机构消毒技术规范》解读培训
- 煤矿铺设轨道质量标准
- 中国摄影家协会会员登记表
- 阿里巴巴与京东的商业模式及竞争优势对比分析——以财务报告为基础会计学专业
- 煤矿井下压裂设计施工规范
- 北师大版数学七年级上册第一节数据的收集课件
- 国内外化工安全事故案例汇总
- 浙江省水域保护规划
- 应用光学第四章棱镜习题解答
- 2021年度安全生产费用使用台账
- 葡萄糖氧化酶法测定血糖浓
评论
0/150
提交评论