版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省江阴市华士片、澄东片2024届数学八下期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.的取值范围如数轴所示,化简的结果是()A. B. C. D.2.一次函数y=﹣2x﹣3的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知,,则的值为()A.-2 B.1 C.-1 D.24.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A. B. C. D.5.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm6.在数学活动课上,老师要求同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分 B.测量两组对边是否分别相等C.测量一组对角是否都为直角 D.测量四边形其中的三个角是否都为直角7.已知点A(-5,y1)、B(-2,y2)都在直线y=-x上,则y1与y2的关系是()A. B. C. D.8.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是()A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍 D.骑车人数占20%9.分式有意义的条件是()A. B. C. D.10.如图,在中,,,是边的中点,则的度数为()A.40° B.50° C.60° D.80°二、填空题(每小题3分,共24分)11.将直线向上平移一个单位长度得到的一次函数的解析式为_______________.12.如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.13.将菱形以点为中心,按顺时针方向分别旋转,,后形成如图所示的图形,若,,则图中阴影部分的面积为__.14.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是_______小时.15.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是_____.16.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为_____.17.当x_____时,二次根式有意义.18.为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨4568户数5753则这组数据的中位数是_____.三、解答题(共66分)19.(10分)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.20.(6分)某校八年级为庆祝中华人民共和国建国70周年,准备举行唱红歌、颂经典活动.八年级(2)班积极准备,需购买文件夹若干,某文具店有甲、乙两种文件夹.(1)若该班只购买甲种文件夹,且购买甲种文件夹的花费(单位:元)与其购买数量(单位:件)满足一次函数关系,若购买20个,需花费180元;若购买30个,需花费260元.该班若需购买甲种文件夹60件,求需花费多少元?(2)若该班购买甲,乙两种文件夹,那么甲种文件夹的单价比乙种文件夹的单价贵2元,若用240元购买甲种文件夹的数量与用180元购买乙种文件夹的数量相同.求该文具店甲乙两种文件夹的单价分别是多少元?21.(6分)写出同时具备下列两个条件的一次函数关系式_____.(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(1,﹣2).22.(8分)州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)a=,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?23.(8分)某服装店用6000元购进一批衬衫,以60元/件的价格出售,很快售完,然后又用13500元购进同款衬衫,购进数量是第一次的2倍,购进的单价比上一次每件多5元,服装店仍按原售价60元/件出售,并且全部售完.(1)该服装店第一次购进衬衫多少件?(2)将该服装店两次购进衬衫看作一笔生意,那么这笔生意是盈利还是亏损?求出盈利(或亏损)多少元?24.(8分)直线y=x+b与双曲线y=交于点A(﹣1,﹣5).并分别与x轴、y轴交于点C、B.(1)直接写出b=,m=;(2)根据图象直接写出不等式x+b<的解集为;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在,请求出D的坐标;若不存在,请说明理由.25.(10分)已知一次函数y=(1m-1)x+m-1.(1)若此函数图象过原点,则m=________;(1)若此函数图象不经过第二象限,求m的取值范围.26.(10分)如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
先由数轴判断出,再根据绝对值的性质、二次根式的性质化简即可.【题目详解】解:由数轴可知,,,原式,故选:.【题目点拨】本题考查的是二次根式的化简,掌握二次根式的性质、数轴的概念是解题的关键.2、A【解题分析】考查一次函数的图像特征.点拨:由得系数符号和常数b决定.解答:对于一次函数,当时直线经过第一、二、四象限或第二、三、四象限;,故直线经过第二、三、四象限,不经过第一象限.3、D【解题分析】
首先将所求式子进行因式分解,然后代入即可得解.【题目详解】将,,代入,得上式=,故选:D.【题目点拨】此题主要考查利用完全平方式进行因式分解求值,熟练掌握,即可解题.4、D【解题分析】
因为DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴,∴,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.5、B【解题分析】解:如图,∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5-3=1.故选B.6、D【解题分析】
根据矩形的判定定理即可选出答案.【题目详解】解:A.对角线是否相互平分,能判定平行四边形,而不能判定矩形;B.两组对边是否分别相等,能判定平行四边形,而不能判定矩形;C.一组对角是否都为直角,不能判定形状;D.四边形其中的三个角是否都为直角,能判定矩形.故选D.【题目点拨】本题考查了矩形的判定定理.解题的关键是牢记这些定理.矩形的判定定理:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.7、D【解题分析】
根据一次函数图象上点的坐标特征可求出y1,y2的值,比较后即可解答.【题目详解】解:∵点A(-5,y1)、B(-2,y2)都在直线y=-x上,∴y1=,y2=1.∵>1,∴y1>y2.故选D.【题目点拨】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征求出y1,y2的值是解题的关键.8、B【解题分析】
根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【题目详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.9、B【解题分析】
根据分式的定义即可判断.【题目详解】依题意得0,解得,故选B.【题目点拨】此题主要考查分式有意义的条件,解题的关键是熟知分式的性质.10、D【解题分析】
根据直角三角形斜边的中线等于斜边的中线一半,求解即可.【题目详解】解:∵,是边的中点,∴CD=BD,∴∠DCB=∠B=50°,∴∠CDB=180°-∠DCB-∠B=80°,故选D.【题目点拨】本题考查了三角形的内角和定理及直角三角形的性质,解题的关键是掌握直角三角形斜边的中线等于斜边的一半.二、填空题(每小题3分,共24分)11、【解题分析】
解:由平移的规律知,得到的一次函数的解析式为.12、.【解题分析】试题分析:点F与点C重合时,折痕EF最大,由翻折的性质得,BC=B′C=10cm,在Rt△B′DC中,B′D==8cm,∴AB′=AD﹣B′D=10﹣8=2cm,设BE=x,则B′E=BE=x,AE=AB﹣BE=6﹣x,在Rt△AB′E中,AE2+AB′2=B′E2,即(6﹣x)2+22=x2,解得x=,在Rt△BEF中,EF=cm.故答案是.考点:翻折变换(折叠问题).13、【解题分析】
由菱形性质可得AO,BD的长,根据.可求,则可求阴影部分面积.【题目详解】连接,交于点,,四边形是菱形,,,,,且,将菱形以点为中心按顺时针方向分别旋转,,后形成的图形,故答案为:【题目点拨】本题考查了:图形旋转的性质、菱形的性质、直角三角形的性质,掌握菱形性质是解题的关键.14、3【解题分析】
平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.【题目详解】根据题意得:这10名学生周末学习的平均时间=(1×1+2×2+4×3+2×4+1×5)÷10=3(小时),故答案为:3.【题目点拨】此题考查条形统计图、加权平均数,解题关键在于利用加权平均数公式即可.15、6<v<2或v=4.2【解题分析】
利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【题目详解】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,1)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=2x+1;将(0,1)、(70,420)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+1;将(0,1)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.2x+1.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<2或v=4.2.故答案为6<v<2或v=4.2【题目点拨】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16、10【解题分析】
易求AB=10,则CE=1.设CD=x,则ED=DB=6-x.根据勾股定理求解.【题目详解】∵∠C=90°,AC=8,BC=6,∴AB=10.根据题意,AE=AB=10,ED=BD.∴CE=1.设CD=x,则ED=6−x.根据勾股定理得x1+11=(6−x)1,解得x=83.即CD长为8BD=6-83=【题目点拨】本题考查的知识点是翻折变换(折叠问题),解题的关键是熟练的掌握翻折变换(折叠问题).17、x≥【解题分析】分析:根据二次根式的定义,形如的式子叫二次根式,列不等式解答.详解:由题意得2x-3≥0,∴x≥.故答案为x≥.点睛:本题考查了二次根式有意义的条件,明确被开方式大于且等于零是二次根式成立的条件是解答本题的关键.18、5吨【解题分析】
找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【题目详解】表中数据为从小到大排列,吨处在第10位、第11位,为中位数,故这组数据的中位数是吨.故答案为:吨.【题目点拨】考查了中位数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.三、解答题(共66分)19、(1)见解析(2)(4,2)(3)(6,0)【解题分析】
(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【题目详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则,解得∴直线PR为y=﹣x+3由y=0得,x=6∴R(6,0).【题目点拨】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.20、(1)买60件需要花费:(元);(2)甲种文件夹每件8元,乙种文件夹每件6元.【解题分析】
(1)设一次函数解析式,根据题意列方程组即可;(2)该文具店甲乙两种文件夹的单价分别是x元和(x-2)元,根据题意列方程组即可.【题目详解】解:(1)设一次函数,∴,解得:,∴一次函数的解析式为.∴购买60件需要花费:(元).(2)设甲种文件夹每件元,则乙种文件夹每件元.解得:.经检验:是原方程的解,且符合题意,(元)答:甲种文件夹每件8元,乙种文件夹每件6元.【题目点拨】本题考查了一次函数的应用,分式方程的应用,正确理解题意是解题的关键.21、y=-x-1【解题分析】试题分析:当y随着x的增大而减小时,则k<0,则本题我们可以设一次函数的解析式为:y=-x+b,然后将点(1,-2)代入求出b的值.考点:函数图象的性质22、(1)10,36°.补全条形图见解析;(2)5天,6天;(3)1.【解题分析】
(1)根据各部分所占的百分比等于1列式计算即可求出a,用360°乘以所占的百分比求出所对的圆心角的度数,求出8天的人数,补全条形统计图即可.(2)众数是在一组数据中,出现次数最多的数据.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.【题目详解】(1)a=1﹣(40%+20%+25%+5%)=1﹣90%=10%.用360°乘以所占的百分比求出所对的圆心角的度数:360°×10%=36°.240÷40=600,8天的人数,600×10%=60,故答案为10,36°.补全条形图如下:(2)∵参加社会实践活动5天的最多,∴众数是5天.∵600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,∴中位数是6天.(3)∵2000×(25%+10%+5%)=2000×40%=1.∴估计“活动时间不少于7天”的学生人数大约有1人.23、(1)该服装店第一次购进衬衫150件.(2)这笔生意共盈利7500元.【解题分析】分析:(1)设该服装店第一次购进衬衫x件,根据题目中的“第二次每件进价比第一次多5元”可得出相等关系,列方程求解即可;(2)用第一次的利润+第二次的利润,和是正数表示盈利.详解:(1)设该服装店第一次购进衬衫x件.由题意得:解得:x=150,经检验:x=150是原方程的解.答:该服装店第一次购进衬衫150件.(2)第一次购进的单价为6000÷150=40(元/件)第二次的购进数量为:150×2=300(件)第二次购进的单价为:40+5=45(元/件)这笔生意的利润为:(60-40)×150+(60-45)×300=7500(元)答:这笔生意共盈利7500元.点睛:本题考查的是分式方程的应用,正确分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24、(1)-1,2;(2)x<﹣1或0<x<2;(3)存在,D的坐标是(6,0)或(20,0).【解题分析】
(1)把A的坐标分别代入一次函数与反比例函数的解析式,即可求得b和m的值;(2)根据图象即可直接写出,即反比例函数的图象在一次函数的图象上部的部分x的取值;(3)求得△OAB的边长,点D在x轴的正半轴上,可以分D在线段OC上(不在O点)或线段OC的延长线上两种情况讨论,依据相似三角形的对应边的比相等即可求得.【题目详解】解:(1)把A(﹣1,﹣2)代入y=x+b得:﹣2=﹣1+b,解得:b=﹣1.把A(﹣1,﹣2)代入y=,得:m=(﹣1)(﹣2)=2.故答案是:﹣1,2;(2)解集为:x<﹣1或0<x<2,故答案是:x<﹣1或0<x<2;(3)OA==,在y=x﹣1中,令x=0,解得y=﹣1,则B的坐标是(0,﹣1).令y=0,解得:x=1,则C的坐标是(1,0).故OB=1,AB==,BC=1,OC=1.∴OB=OC,即△OBC是等腰直角三角形,∴∠OCB=∠OBC=12°,∠BCE=132°.过A作AF⊥y轴于点F.则△ABF是等腰直角△,∠ABF=12°,∠ABO=132°.1)当D在线段OC(不与O重合)上时,两个三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论