安徽省黄山市休宁县2024届数学八下期末复习检测模拟试题含解析_第1页
安徽省黄山市休宁县2024届数学八下期末复习检测模拟试题含解析_第2页
安徽省黄山市休宁县2024届数学八下期末复习检测模拟试题含解析_第3页
安徽省黄山市休宁县2024届数学八下期末复习检测模拟试题含解析_第4页
安徽省黄山市休宁县2024届数学八下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省黄山市休宁县2024届数学八下期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如果点P(m,1-2m)在第四象限,那么A.0<m<12 B.-122.如图,将沿直线向右平移后到达的位置,连接、,若的面积为10,则四边形的面积为()A.15 B.18 C.20 D.243.为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体 B.样本 C.个体 D.样本容量4.用配方法解方程,则方程可变形为()A. B. C. D.5.不等式组的解集是A.x≥8 B.x>2 C.0<x<2 D.2<x≤86.测得某人一根头发的直径约为0.0000715米,该数用科学记数法可表示为()A.0.715×104 B.0.715×10﹣4 C.7.15×105 D.7.15×10﹣57.如图的图形中只能用其中一部分平移可以得到的是()A. B.C. D.8.已知关于的一元二次方程有两个实数根,.则代数式的值为()A.10 B.2 C. D.9.如图,点、在函数(,且是常数)的图像上,且点在点的左侧过点作轴,垂足为,过点作轴,垂足为,与的交点为,连结、.若和的面积分别为1和4,则的值为()A.4 B. C. D.610.计算÷的结果是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直角三角形DEF是直角三角形ABC沿BC平移得到的,如果AB=6,BE=2,DH=1,则图中阴影部分的面积是____.12.请写出的一个同类二次根式:________.13.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是_____.14.已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是_____.15.因式分解:____.16.如图,已知在Rt△ABC中,∠A=90°,AB=3,BC=5,分别以Rt△ABC三条边为直径作半圆,则图中阴影部分的面积为_____.17.若有意义,则x的取值范围为___.18.如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是____.三、解答题(共66分)19.(10分)解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.20.(6分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)断⊿BEC的形状,并说明理由;(2)判断四边形EFPH是什么特殊四边形?并证明你的判断.21.(6分)如图1,在中,,,,以OB为边,在外作等边,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)连接AC,BE交于点P,求AP的长及AP边上的高BH;(3)在(2)的条件下,将四边形OABC置于如图所示的平面直角坐标系中,以E为坐标原点,其余条件不变,以AP为边向右上方作正方形APMN:①M点的坐标为.②直接写出正方形APMN与四边形OABC重叠部分的面积(图中阴影部分).22.(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)23.(8分)已知a,b满足|a﹣|++(c﹣4)2=1.(1)求a,b,c的值;(2)判断以a,b,c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.24.(8分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.第1次第2次第3次第4次第5次甲成绩94746乙成绩757a7(1)a=__,x乙=____(2)①分别计算甲、乙成绩的方差.②请你从平均数和方差的角度分析,谁将被选中.25.(10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.26.(10分)学校为了更新体育器材,计划购买足球和篮球共100个,经市场调查:购买2个足球和5个篮球共需600元;购买3个足球和1个篮球共需380元。(1)请分别求出足球和篮球的单价;(2)学校去采购时恰逢商场做促销活动,所有商品打九折,并且学校要求购买足球的数量不少于篮球数量的3倍,设购买足球a个,购买费用W元。①写出W关于a的函数关系式,②设计一种实际购买费用最少的方案,并求出最少费用。

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

横坐标为正,纵坐标为负,在第四象限.【题目详解】解:∵点p(m,1-2m)在第四象限,∴m>0,1-2m<0,解得:m>12,故选D【题目点拨】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.2、A【解题分析】

根据平移的性质和平行四边形的判定条件可得四边形BDEC是平行四边形,得到四边形BDEC的面积为△ABC面积的2倍,即可求得四边形的面积.【题目详解】解:∵△ABC沿直线AB向右平移后到达△BDE的位置,∴AB=BD,BC∥DE且BC=DE,∴四边形BDEC是平行四边形,∵平行四边形BDEC和△ABC等底等高,∴,∴S四边形ACED=故选:A.【题目点拨】本题考查了平移的性质和平行四边形的判定,平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.3、B【解题分析】

根据总体、个体、样本、样本容量的定义逐个判断即可.【题目详解】解:抽出的500名考生的数学成绩是样本,故选B.【题目点拨】本题考查了总体、个体、样本、样本容量等知识点,能熟记总体、个体、样本、样本容量的定义是解此题的关键.4、D【解题分析】

先化二次项的系数为1,然后把常数项移到右边,再两边加上一次项系数一半的平方,把方程的左边配成完全平方的形式.【题目详解】系数化为1得:移项:配方:即【题目点拨】本题考查用配方法解一元二次方程的步骤,熟练掌握配方法解方程是本题关键5、D【解题分析】试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,.故选D.6、D【解题分析】0.0000715=,故选D.7、B【解题分析】

根据平移的性质,对选项进行一一分析,排除错误答案.【题目详解】、图形为轴对称所得到,不属于平移;、图形的形状和大小没有变化,符合平移性质,是平移;、图形为旋转所得到,不属于平移;、最后一个图形形状不同,不属于平移.故选.【题目点拨】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.8、B【解题分析】

先由根与系数的关系得到关于的方程组,代入直接求值即可.【题目详解】解:因为有两个实数根,,所以所以,解得:,所以,故选B.【题目点拨】本题考查的是一元二次方程的根与系数的关系,方程组的解法及代数式的求值,掌握相关的知识点是解题关键.9、D【解题分析】

设点M(a,0),N(0,b),然后可表示出点A、B、C的坐标,根据的面积为1可求出ab=2,根据的面积为4列方程整理,可求出k.【题目详解】解:设点M(a,0),N(0,b),∵AM⊥x轴,且点A在反比例函数的图象上,∴点A的坐标为(a,),∵BN⊥y轴,同理可得:B(,b),则点C(a,b),∵S△CMN=NC•MC=ab=1,∴ab=2,∵AC=−b,BC=−a,∴S△ABC=AC•BC=(−b)•(−a)=4,即,∴,解得:k=6或k=−2(舍去),故选:D.【题目点拨】本题考查反比例函数图象上点的坐标特征、三角形的面积计算等,解答本题的关键是明确题意,利用三角形的面积列方程求解.10、C【解题分析】

根据根式的计算法则计算即可.【题目详解】解:÷=故选C.【题目点拨】本题主要考查分式的计算化简,这是重点知识,应当熟练掌握.二、填空题(每小题3分,共24分)11、11【解题分析】

根据平移的性质可得到相等的边与角,利用平行线分线段成比例可求出EC,再根据即可得到答案.【题目详解】解:由平移的性质知,DE=AB=6,HE=DE-DH=5,CF=BE=2,HC∥DF,∠DEF=∠B=90°,∴HE:DE=EC:EF=EC:(EC+CF),即5:6=EC:(EC+2),∴EC=10,EF=EC+CF=10+2=12故答案为:11.【题目点拨】本题利用了平行线截线段对应成比例和平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.12、【解题分析】试题分析:因为,所以与是同类二次根式的有:,….(答案不唯一).考点:1.同类二次根式;2.开放型.13、:2或﹣1.【解题分析】试题解析:当k>0时,y值随x值的增大而增大,∴,解得:,此时=2;当k<0时,y值随x值的增大减小,∴,解得:,此时=-1.综上所述:的值为2或-1.14、1【解题分析】

将代入原式=(x-3-2)2=(x-1)2计算可得.【题目详解】当时,原式,故答案为1.【题目点拨】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.15、【解题分析】

先提取4,然后利用平方差公式计算.【题目详解】原式=4(m2-9)=4(m+3)(m-3),

故答案是:4(m+3)(m-3)【题目点拨】考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,一般有公因式会先提取公因式.16、6【解题分析】

首先在Rt△ABC中,∠A=90°,AB=3,BC=5,根据勾股定理,求出AC=4,然后求出以AC为直径的半圆面积为2π,以AB为直径的半圆面积为,以BC为直径的半圆面积为,Rt△ABC的面积为6,阴影部分的面积为2π+-(-6),即为6.【题目详解】解:∵在Rt△ABC中,∠A=90°,AB=3,BC=5,∴以AC为直径的半圆面积为2π,以AB为直径的半圆面积为,以BC为直径的半圆面积为,Rt△ABC的面积为6阴影部分的面积为2π+-(-6),即为6.【题目点拨】此题主要考查勾股定理和圆面积公式的运用,熟练掌握,即可得解.17、x≥﹣1.【解题分析】

根据被开方数大于等于0,分母不等于0列式计算即可得解.【题目详解】由题意得,x+1≥0且x+2≠0,解得x≥﹣1.故答案为x≥﹣1.【题目点拨】本题考查了二次根式有意义的条件和分式有意义的条件,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.18、1【解题分析】

试题解析:∵菱形ABCD的对角线AC=6,BD=8,∴菱形的面积S=AC•BD=×8×6=1.考点:菱形的性质.三、解答题(共66分)19、(1)(x﹣y)(3a+1b)(3a﹣1b);(1)m=2,n=9,(x+3)1.【解题分析】

(1)用提取公因式和平方差公式进行因式分解即可解答;(1)根据已知条件分别求出m和n的值,然后进行因式分解即可解答.【题目详解】解:(1)原式=9a1(x﹣y)﹣4b1(x﹣y)=(x﹣y)(9a1﹣4b1)=(x﹣y)(3a+1b)(3a﹣1b);(1)∵(x+1)(x+4)=x1+2x+8,甲看错了n,∴m=2.∵(x+1)(x+9)=x1+10x+9,乙看错了m,∴n=9,∴x1+mx+n=x1+2x+9=(x+3)1.【题目点拨】本题考查了用提取公因式和平方差公式进行因式分解,熟练掌握解题的关键.20、(1)△BEC是直角三角形,理由见解析;(2)四边形EFPH为矩形,证明见解析;【解题分析】

(1)由矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;(2)由矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH∥FP,EF∥HP,推出平行四边形EFPH,根据矩形的判定推出即可;【题目详解】(1)△BEC是直角三角形,理由是:∵矩形ABCD,∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,由勾股定理得:CE===,同理BE=2,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.(2)四边形EFPH为矩形,∵矩形ABCD,∴AD=BC,AD∥BC,∵DE=BP,∴四边形DEBP是平行四边形,∴BE∥DP,∵AD=BC,AD∥BC,DE=BP,∴AE=CP,∴四边形AECP是平行四边形,∴AP∥CE,∴四边形EFPH是平行四边形,∵∠BEC=90°,∴平行四边形EFPH是矩形.考点:1、勾股定理及逆定理;2、矩形的性质和判定;3、平行四边形的性质和判定;4、三角形的面积21、(1)见解析;(2),;(3)①;②【解题分析】

(1)利用直角三角形斜边中线的性质可得DO=DA,推出∠AEO=60°,进一步得出BC∥AE,CO∥AB,可得结论;

(2)先计算出OA=,推出PB=,利用勾股定理求出AP=,再利用面积法计算BH即可;

(3)①求出直线PM的解析式为y=x-3,再利用两点间的距离公式计算即可;

②易得直线BC的解析式为y=x+4,联立直线BC和直线PM的解析式成方程组,求得点G的坐标,再利用三角形面积公式计算.【题目详解】(1)证明:∵Rt△OAB中,D为OB的中点,

∴AD=OB,OD=BD=OB,

∴DO=DA,

∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,

又∵△OBC为等边三角形,

∴∠BCO=∠AEO=60°,∴BC∥AE,

∵∠BAO=∠COA=90°,∴CO∥AB,

∴四边形ABCE是平行四边形;(2)解:在Rt△AOB中,∠AOB=30°,OB=8,

∴AB=4,

∴OA=,

∵四边形ABCE是平行四边形,

∴PB=PE,PC=PA,

∴PB=,∴∴,即∴;(3)①∵C(0,4),

设直线AC的解析式为y=kx+4,

∵P(,0),

∴0=k+4,

解得,k=,

∴y=x+4,

∵∠APM=90°,

∴直线PM的解析式为y=x+m,

∵P(,0),

∴0=×+m,

解得,m=-3,

∴直线PM的解析式为y=x-3,设M(x,x-3),

∵AP=,

∴(x-)2+(x-3)2=()2,

化简得,x2-4x-4=0,

解得,x1=,x2=(不合题意舍去),

当x=时,y=×()-3=,

∴M(,),

故答案为:(,);②∵∴直线BC的解析式为:,联立,解得,∴,【题目点拨】本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.22、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解题分析】

(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【题目详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.23、(1)a=,b=5,c=4;(2)【解题分析】

(1)根据非负数的性质得到方程,解方程即可得到结果;(2)根据三角形的三边关系,勾股定理的逆定理判断即可.【题目详解】(1)∵a,b,c满足|a-|++(c-4)2=1,∴|a-|=1,=1,(c-4)2=1,解得a=,b=5,c=4.(2)∵a=,b=5,c=4,∴a+b=+5>4.∴以a,b,c为边能构成三角形.∵a2+b2=()2+52=32=(4)2=c2,∴此三角形是直角三角形.【题目点拨】本题考查了勾股定理的逆定理,非负数的性质,熟练掌握勾股定理的逆定理是解题的关键.24、(1)4,6;(2)乙【解题分析】

(1)根据总成绩相同可求得a;(2)根据方差公式,分别求两者方差.即s²=1n[(x1-x)²+(x2-x)²+...+(xn-x)²];【题目详解】(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30﹣7﹣7﹣5﹣7=4,x乙(2)甲的方差为:15[(9﹣6)2+(4﹣6)2+(7﹣6)2+(4﹣6)2+(6﹣6)2乙的方差为:15[(7﹣6)2+(5﹣6)2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论