版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省枣庄市第三十二中学数学八年级第二学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.D、E是△ABC的边AB、AC的中点,△ABC、△ADE的面积分别为S、S1,则下列结论中,错误的是()A.DE∥BC B.DE=BC C.S1=S D.S1=S2.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:衬衫尺码3940414243平均每天销售件数1012201212该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是()A.平均数 B.方差 C.中位数 D.众数3.如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为()A.5 B.10 C.6 D.84.如图,在菱形ABCD中,AB=AC=1,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△ADO≌△ACH;④;其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个5.如图顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是()A.等腰梯形 B.直角梯形 C.菱形 D.矩形6.某次知识竞赛共有道题,每一题答对得分,答错或不答扣分,小亮得分要超过分,他至少要答对多少道题?如果设小亮答对了道题,根据题意列式得()A. B.C. D.7.在,,,高,则BC的长是()A.14 B.4 C.4或14 D.7或138.下列代数式中,属于最简二次根式的是(
)A.7 B.23 C.12 D.0.59.若分式的值为零,则x的值是()A.2或-2 B.2 C.-2 D.410.不等式>﹣1的正整数解的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.使分式有意义的x范围是_____.12.若最简二次根式与能合并成一项,则a=_____.13.分解因式:m2-9m=______.14.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是分.15.计算-=_______.16.已知一个多边形的每一个外角都等于,则这个多边形的边数是.17.若是一个正整数,则正整数m的最小值是___________.18.一组数据5,8,x,10,4的平均数是2x,则这组数据的中位数是___________.三、解答题(共66分)19.(10分)已知一次函数的图象经过点(-4,-9),(3,5)和(a,6),求a的值.20.(6分)在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S矩形ABCD=3S△PAB,则PA+PB的最小值为_____.21.(6分)在平面直角坐标系xOy中,点P在函数y=4x(x>0)的图象上,过P作直线PA⊥x轴于点A,交直线y=x于点M,过M作直线MB⊥y轴于点B.交函数y=(1)若点P的横坐标为1,写出点P的纵坐标,以及点M的坐标;(2)若点P的横坐标为t,①求点Q的坐标(用含t的式子表示)②直接写出线段PQ的长(用含t的式子表示)22.(8分)小王开车从甲地到乙地,去时走A线路,全程约100千米,返回时走B路线,全程约60千米.小王开车去时的平均速度比返回时的平均速度快20千米/小时,所用时间却比返回时多15分钟.若小王返回时的平均车速不低于70千米/小时,求小王开车返回时的平均速度.23.(8分)如图,已知菱形的对角线相交于点,延长至点,使,连结.求证:.当时,四边形为菱形吗?请说明理由.24.(8分)如图1,直线l1:y=﹣12x+3与坐标轴分别交于点A,B,与直线l2(1)求A,B两点的坐标;(2)求△BOC的面积;(3)如图2,若有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t(s),连接CQ.①当OA=3MN时,求t的值;②试探究在坐标平面内是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?若存在,请直接写出t的值;若不存在,请说明理由.25.(10分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出把△ABC向下平移4个单位后的图形.(2)画出将△ABC绕原点O按顺时针方向旋转90°后的图形.(3)写出符合条件的以A、B、C、D为顶点的平行四边形的第四个顶点D的坐标.26.(10分)已知:D,E分别为△ABC的边AB,AC的中点.求证:DE∥BC,且DE=BC
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
由D、E是△ABC的边AB、AC的中点得出DE是△ABC的中位线,得出DE∥BC,DE=BC,易证△ADE∽△ABC得出,即可得出结果.【题目详解】∵D、E是△ABC的边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∵DE∥BC,∠A=∠A,∴△ADE∽△ABC,∴,即S1=S,∴D错误,故选:D.【题目点拨】考查了相似三角形的判定与性质、三角形中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.2、D【解题分析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【题目详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选D.【题目点拨】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.3、A【解题分析】试题分析:根据菱形的性质:菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可知每个直角三角形的直角边,根据勾股定理可将菱形的边长求出.解:设AC与BD相交于点O,由菱形的性质知:AC⊥BD,OA=AC=3,OB=BD=4在Rt△OAB中,AB===1所以菱形的边长为1.故选A.考点:菱形的性质.4、B【解题分析】
根据菱形的性质,利用SAS证明即可判断①;根据△ABF≌△CAE得到∠BAF=∠ACE,再利用外角的性质以及菱形内角度数即可判断②;通过说明∠CAH≠∠DAO,判断△ADO≌△ACH不成立,可判断③;再利用菱形边长即可求出菱形面积,可判断④.【题目详解】解:∵在菱形ABCD中,AB=AC=1,∴△ABC为等边三角形,∴∠B=∠CAE=60°,又∵AE=BF,∴△ABF≌△CAE(SAS),故①正确;∴∠BAF=∠ACE,∴∠FHC=∠ACE+∠HAC=∠BAF+∠HAC=60°,故②正确;∵∠B=∠CAE=60°,则在△ADO和△ACH中,∠OAD=60°=∠CAB,∴∠CAH≠60°,即∠CAH≠∠DAO,∴△ADO≌△ACH不成立,故③错误;∵AB=AC=1,过点A作AG⊥BC,垂足为G,∴∠BAG=30°,BG=,∴AG==,∴菱形ABCD的面积为:==,故④错误;故正确的结论有2个,故选B.【题目点拨】本题考查了全等三角形判定和性质,菱形的性质和面积,等边三角形的判定和性质,外角的性质,解题的关键是利用菱形的性质证明全等.5、D【解题分析】
首先作出图形,根据三角形的中位线定理,可以得到,,,再根据等腰梯形的对角线相等,即可证得四边形EFGH的四边相等,即可证得是菱形,然后根据三角形中位线定理即可证得四边形OPMN的一组对边平行且相等,则是平行四边形,在根据菱形的对角线互相垂直,即可证得平行四边形的一组临边互相垂直,即可证得四边形OPMN是矩形.【题目详解】解:连接AC,BD.∵E,F是AB,AD的中点,即EF是的中位线.,同理:,,.又等腰梯形ABCD中,..四边形EFGH是菱形.是的中位线,∴EFEG,,同理,NMEG,∴EFNM,四边形OPMN是平行四边形.,,又菱形EFGH中,,平行四边形OPMN是矩形.故选:D.【题目点拨】本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH和四边形OPMN的边的关系.6、D【解题分析】
小亮答对题的得分:,小亮答错题的得分:,不等关系:小亮得分要超过分.【题目详解】根据题意,得.故选:.【题目点拨】此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.7、C【解题分析】
分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD−BD.【题目详解】解:(1)如图锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2−AD2=152−122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2−AD2=132−122=25,∴CD=5,∴BC的长为BD+DC=9+5=11;(2)如图钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2−AD2=152−122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2−AD2=132−122=25,∴CD=5,∴BC的长为DC−BD=9−5=1.故BC长为11或1.故选:C.【题目点拨】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.8、A【解题分析】
最简二次根式满足下列两个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式,再对各选项逐一判断即可.【题目详解】解:A、7是最简二次根式,故A符合题意;B、23=63,故C、12=23,故12不是最简二次根式,故D、0.5=22,故0.5故答案为:A【题目点拨】本题考查二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.9、C【解题分析】
试题分析:当分式的分子为零,分母不为零时,则分式的值为零.【题目详解】x2-4=0,x=±2,同时分母不为0,∴x=﹣210、D【解题分析】,去分母得3(x+1)>2(2x+2)-6,去括号得3x+3>4x+4-6,移项,合并同类项得-x>-5,系数化为1得x<5,所以满足不等式的正整数的个数有4个,故选D.二、填空题(每小题3分,共24分)11、【解题分析】
满足分式有意义的条件:分母不等于零,据此列不等式求出答案.【题目详解】∵分式有意义,∴,∴,故答案为:.【题目点拨】此题考查分式有意义的条件:使分式的分母不等于零,熟记使分式有意义的条件是正确解答此题的关键.12、2【解题分析】
根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【题目详解】解:,由最简二次根式与能合并成一项,得a+2=2.解得a=2.故答案是:2.【题目点拨】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.13、m(m-9)【解题分析】
直接提取公因式m即可.【题目详解】原式=m(m-9).故答案为:m(m-9).【题目点拨】此题主要考查了提公因式法分解因式,关键是正确找出公因式.14、88【解题分析】试题分析:根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可:∵笔试按60%、面试按40%计算,∴总成绩是:90×60%+85×40%=88(分).15、2【解题分析】
利用二次根式的减法法则计算即可.【题目详解】解:原式故答案为:【题目点拨】本题考查二次根式的减法运算,熟练掌握二次根式的减法运算法则是解题关键.16、5【解题分析】
∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.17、5【解题分析】
由于是一个正整数,所以根据题意,也是一个正整数,故可得出m的值.【题目详解】解:∵是一个正整数,∴根据题意,是一个最小的完全平方数,∴m=5,故答案为5.【题目点拨】本题主要考查了二次根式的定义,正确对二次根式进行化简并找到被开方数是解答本题的关键.18、5【解题分析】
可运用求平均数公式,求出x的值,再根据中位数的性质,求出中位数即可【题目详解】依题意得:5+8+x+10+4=2x×5∴x=3,∴3,4,5,8,10,的中位数是5故答案为:5【题目点拨】此题考查算术平均数,中位数,难度不大三、解答题(共66分)19、【解题分析】
设函数解析式为y=kx+b,将两点代入可求出k和b的值,进而可得出直线解析式.将点(a,6)代入可得关于a的方程,解出即可.【题目详解】设一次函数的解析式y=ax+b,∵图象过点(3,5)和(-4,-9),将这两点代入得:,解得:k=2,b=-1,∴函数解析式为:y=2x-1;将点(a,6)代入得:2a-1=6,解得:.【题目点拨】本题考查待定系数法求一次函数解析式,属于比较基础的题,注意待定系数法的掌握,待定系数法是中学数学一种很重要的解题方法.20、4【解题分析】
首先由S矩形ABCD=3S△PAB,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【题目详解】设△ABP中AB边上的高是h.∵S矩形ABCD=3S△PAB,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值为4.故答案为:4.【题目点拨】本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.21、(1)点P的纵坐标为4,点M的坐标为(1,1);(2)①4t,t【解题分析】
(1)直接将点P的横坐标代入y=4x(x>0)中,得到点P的纵坐标,由点M在PA上,PA⊥x(2)①由点P的横坐标为t,得到M的横坐标为t,因为M在y=x上,得到M的坐标为(t,t),从而得到Q的纵坐标,代入反比例函数解析式即可的到点Q的坐标;②连接PQ,很快就发现PQ是直角三角形PMQ的斜边,直接利用勾股定理即可得到答案.【题目详解】解:
(1)∵点P在函数y=4x(x>0)的图象上,点P∴y=4∴点P的纵坐标为4,∵点M在PA上,PA⊥x轴,且点P的横坐标为1,∴点M的横坐标为1,又∵点M在直线y=x上,∴点M的坐标为(1,1),故答案为点P的纵坐标为4,点M的坐标为(1,1);(2)①∵点P的横坐标为t,点P在函数y=4∴点P的坐标为t,4∵直线PA⊥x轴,交直线y=x于点M,∴点M的坐标为(t,t),
∵直线MB⊥y轴,交函数y=4x(x>0)的图象于点Q,
∴点Q②连接PQ,∵P的坐标为t,4t,M的坐标为(t,t),Q的坐标为∴PM=4t-t,MQ=∴PQ=PM故答案为线段PQ的长为2t-【题目点拨】本题考查的知识点是正比例函数的图像和性质,反比例函数的图像和性质,反比例函数的应用,平面直角坐标系中点的坐标,点到坐标及其原点的距离和勾股定理的应用,掌握好正比例函数与反比例函数的点的坐标特征是解题的关键.22、80千米/小时【解题分析】
设小王开车返回时的平均速度为x千米/小时,根据题意列出分式方程,然后求解得到x的值,再进行验根,得到符合题意的值即可.【题目详解】解:设小王开车返回时的平均速度为x千米/小时,,,,经检验:都是原方程的根,但是,不符合题意,应舍去.答:小王开车返回时的平均速度是80千米/小时.【题目点拨】本题主要考查分式方程的应用,解此题的关键在于根据题意设出未知数,找到题中相等关系的量列出方程,然后求解,验根得到符合题意的解即可.23、(1)详见解析;(2)详见解析.【解题分析】
(1)根据菱形的四条边的对边平行且相等可得AB=CD,AB∥CD,再求出四边形BECD是平行四边形,然后根据平行四边形的对边相等证明即可;
(2)只要证明DC=DB,即证明△DCB是等边三角形即可解决问题;【题目详解】证明:四边形是菱形,∴,,又∵,∴,,∴四边形
是平行四边形,∴;解:结论:四边形是菱形.理由:∵四边形是菱形,∴,∵,∴,是等边三角形,∴,∵四边形是平行四边形,∴四边形是菱形.【题目点拨】考查了菱形的性质和判定,平行四边形的性质和判定,平行线的性质,熟记各图形的性质并准确识图是解题的关键.24、(1)A(6,0)B(0,3);(2)S△OBC=3;(3)①t=83或163;②t=(6+22)s或(6﹣2【解题分析】
(1)利用待定系数法即可解决问题;(2)构建方程组确定点C坐标即可解决问题;(3)根据绝对值方程即可解决问题;(4)分两种情形讨论:当OC为菱形的边时,可得Q1-22,0,Q222,0,Q【题目详解】(1)对于直线y=-12x+3,令x=0得到y=3,令A(6,0)B(0,3).(2)由y=-12x+3∴C(2,2),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京工业大学浦江学院《政治学概论》2021-2022学年第一学期期末试卷
- 签约医生课件教学课件
- 汽车尾气检测中心可行性研究报告
- 南京工业大学浦江学院《汽车美容》2022-2023学年第一学期期末试卷
- 《小毛虫》说课稿
- 南京工业大学《中国文明史(中国传统天文学)》2021-2022学年第一学期期末试卷
- 有关液压课件教学课件
- 南京工业大学《药剂学》2021-2022学年第一学期期末试卷
- 南京工业大学《数学类专业写作》2023-2024学年第一学期期末试卷
- 南京工业大学《深度学习》2023-2024学年期末试卷
- MOOC 管理学原理-东北财经大学 中国大学慕课答案
- 农贸市场食品安全事故处置方案
- 六年级语文总复习课《修改病句》修改课件市公开课一等奖省赛课获奖课件
- 餐厅食品安全保障
- 药品经营与管理大学生职业规划
- 怀孕的hcg验血报告单
- 应力的概念讲解
- JF-2023-合同中小学校校外供餐合同示范文本
- 入团答辩-演讲模板
- 聂树斌案-演讲模板
- 只争朝夕不负韶华岗位竞聘述职报告
评论
0/150
提交评论