浙江省临海市2024届数学八下期末综合测试模拟试题含解析_第1页
浙江省临海市2024届数学八下期末综合测试模拟试题含解析_第2页
浙江省临海市2024届数学八下期末综合测试模拟试题含解析_第3页
浙江省临海市2024届数学八下期末综合测试模拟试题含解析_第4页
浙江省临海市2024届数学八下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省临海市2024届数学八下期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.已知,如图,,,,的垂直平分交于点,则的长为()A. B. C. D.2.要使代数式有意义,实数的取值范围是()A. B. C. D.3.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差S甲2=3,S乙A.甲 B.乙 C.一样 D.不能确定4.在某学校汉字听写大赛中,有21名同学参加比赛,预赛成绩各不相同,要取前10名才能参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的(

)A.中位数 B.平均数 C.众数 D.方差5.若x<y,则下列结论不一定成立的是()A.x﹣3<y﹣3 B.﹣5x>﹣5y C.﹣ D.x2<y26.已知一次函数y=(m+1)x+n-2的图象经过一.三.四象限,则m,n的取值范围是()A.m>-1,n>2 B.m<-1,n>2 C.m>-1,n<2 D.m<-1,n<27.-(-6)等于()A.-6 B.6 C. D.±68.下列是最简二次根式的为()A. B. C. D.(a>0)9.如图,A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,若,则S1+S2的值为()A.3 B.4 C.5 D.610.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm二、填空题(每小题3分,共24分)11.已知:线段求作:菱形,使得且.以下是小丁同学的作法:①作线段;②分别以点,为圆心,线段的长为半径作弧,两弧交于点;③再分别以点,为圆心,线段的长为半径作弧,两弧交于点;④连接,,.则四边形即为所求作的菱形.(如图)老师说小丁同学的作图正确.则小丁同学的作图依据是:_______.12.如图,在正方形ABCD中,H为AD上一点,∠ABH=∠DBH,BH交AC于点G.若HD=2,则线段AD的长为_____.13.如图,四边形中,,,为上一点,分别以,为折痕将两个角(,)向内折起,点,恰好都落在边的点处.若,,则________.14.直角三角形的两边为3和4,则该三角形的第三边为__________.15.在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.16.直角三角形的两边长分别为5和4,则该三角形的第三边的长为_____.17.解分式方程+=时,设=y,则原方程化为关于y的整式方程是______.18.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是_____.三、解答题(共66分)19.(10分)因式分解(1)(2)(3)(4)20.(6分)为鼓励节约用电,某地用电收费标准规定:如果每月每户用电不超过150度,那么每度电0.5元;如果该月用电超过150度,那么超过部分每度电0.8元.(1)如果小张家一个月用电128度,那么这个月应缴纳电费多少元?(2)如果小张家一个月用电a度,那么这个月应缴纳电费多少元?(用含a的代数式表示)(3)如果这个月缴纳电费为147.8元,那么小张家这个月用电多少度?21.(6分)学完三角形的高后,小明对三角形与高线做了如下研究:如图,是中边上的-点,过点、分别作、、、,垂足分别为点、、,由与的面积之和等于的面积,有等量关系式:.像这种利用同一平面图形的两种面积计算途径可以得出相关线段的数量关系式,从而用于解决数学问题的方法称为“等积法”,下面请尝试用这种方法解决下列问题.图(1)图(2)(1)如图(1),矩形中,,,点是上一点,过点作,,垂足分别为点、,求的值;(2)如图(2),在中,角平分线、相交于点,过点分别作、,垂足分别为点、,若,,求四边形的周长.22.(8分)列方程解应用题今年1月下旬以来,新冠肺炎疫情在全国范围内迅速蔓延,而比疫情蔓延速度更快的是口罩恐慌.企业复工复产急需口罩,某大型国有企业向生产口罩的A、B两厂订购口罩,向A厂支付了1.32万元,向B厂支付了2.4万元,且在B厂订购的口罩数量是A长的2倍,B厂的口罩每只比A厂低0.2元.求A、B两厂生产的口罩单价分别是多少元?23.(8分)如图,已知点E在平行四边形ABCD的边AB上,设=,再用图中的线段作向量.(1)写出平行的向量;(2)试用向量表示向量;(3)求作:.24.(8分)已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=.(1)求平行四边形ABCD的面积S□ABCD;(2)求对角线BD的长.25.(10分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0),将△ABC绕原点O顺时针旋转90°得到△A'B'C'.(1)画出△A’B’C’,并直接写出点A的对应点A'的坐标;(2)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.26.(10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.(1)求证:△ADE≌△CBF;(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

根据中位线的性质得出,,然后根据勾股定理即可求出DE的长.【题目详解】垂直平分,为中边上的中位线,∴,在中,,.故选D.【题目点拨】本题考查了三角形的线段长问题,掌握中位线的性质、勾股定理是解题的关键.2、B【解题分析】

根据二次根式的双重非负性即可求得.【题目详解】代数式有意义,二次根号下被开方数≥0,故∴故选B.【题目点拨】本题考查了二次根式有意义的条件,难度低,属于基础题,熟练掌握二次根式的双重非负性是解题关键.3、B【解题分析】

根据方差的定义,方差越小数据越稳定.【题目详解】解:∵两人命中环数的平均数都是7,方差S甲2=3,S乙2=1.8,∴S甲2>S乙2,∴射击成绩较稳定的是乙;故选:B.【题目点拨】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、A【解题分析】

可知一共有21名同学参赛,要取前10名,因此只需知道这组数据的中位数即可.【题目详解】解:∵有21名同学参加比赛,预赛成绩各不相同,要取前10名才能参加决赛,∴小颖是否能进入决赛,将21名同学的成绩从小到大排列,可知第11名同学的成绩是这组数据的中位数,∴小颖要知道这组数据的中位数,就可知道自己是否进入决赛.故答案为:A【题目点拨】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5、D【解题分析】

根据不等式的性质分析判断即可.【题目详解】解:A、不等式x<y的两边同时减去3,不等式仍成立,即x﹣3<y﹣3,故本选项错误;B、不等式x<y的两边同时乘以﹣5,不等号方向改变.即:﹣5x>﹣5y,故本选项错误;C、不等式x<y的两边同时乘以﹣,不等号方向改变.即:﹣x>﹣y,故本选项错误;D、不等式x<y的两边没有同时乘以相同的式子,故本选项正确.故选:D.【题目点拨】考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6、C【解题分析】

根据一次函数的图象和性质得出m+1>0,n-2<0,解不等式即可.【题目详解】解:∵一次函数y=(m+1)x+n-2的图象经过一.三.四象限∴m+1>0,n-2<0∴m>-1,n<2,故选:C.【题目点拨】本题主要考查了一次函数图象与系数的关系,关键是掌握数形结合思想.7、B【解题分析】

根据相反数的概念解答即可.【题目详解】解:-(-1)=1.故选:B.【题目点拨】本题主要考查相反数的概念,属于应知应会题型,熟知定义是关键.8、A【解题分析】

A.是最简二次根式;B.不是最简二次根式,;C.不是最简二次根式,;D.不是最简二次根式,.故选A.【题目点拨】本题考查最简二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.9、B【解题分析】

首先根据反比例函数中k的几何意义,可知S矩形ACOD=S矩形BEOF=|k|=3,又S阴影=1,则S1=S矩形ACOD-S阴影=2,S2=S矩形BEOF-S阴影=2,从而求出S1+S2的值.【题目详解】解:∵A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,

∴S矩形ACOD=S矩形BEOF=3,

又∵S阴影=1,

∴S1=S2=3-1=2,

∴S1+S2=1.

故选:B.【题目点拨】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.10、B【解题分析】解:如图,∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5-3=1.故选B.二、填空题(每小题3分,共24分)11、三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形【解题分析】

利用作法和等边三角形的判定与性质得到∠A=60°,然后根据菱形的判定方法得到四边形ABCD为菱形.【题目详解】解:由作法得AD=BD=AB=a,CD=CB=a,∴△ABD为等边三角形,AB=BC=CD=AD,∴∠A=60°,四边形ABCD为菱形,故答案为:三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形.【题目点拨】本题考查了尺规作图,及菱形的判定,熟练掌握尺规作图,及菱形的判定知识是解决本题的关键.12、【解题分析】

作HE⊥BD交BD于点E,在等腰直角三角形DEH中求出HE的长,由角平分线的性质可得HE=AH,即可求出AD的长.【题目详解】作HE⊥BD交BD于点E,∵四边形ABCD是正方形,∴∠BAD=90°,∠ADB=45°,∴△DEH是等腰直角三角形,∴HE=DE,∵HE2+DE2=DH2,∴HE=,∵∠ABH=∠DBH,∠BAD=90°,∠BEH=90°,∴HE=AH=,∴.AD=.故答案为.【题目点拨】本题考查了正方形的性质,角平分线的性质,勾股定理,等腰直角三角形的判定与性质,熟练掌握正方形的性质是解答本题的关键.13、【解题分析】

先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC-BH=BC-AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=,所以EF=.【题目详解】解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,

∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,

∴AB=2EF,DC=DF+CF=8,

作DH⊥BC于H,

∵AD∥BC,∠B=90°,

∴四边形ABHD为矩形,

∴DH=AB=2EF,HC=BC-BH=BC-AD=5-3=2,

在Rt△DHC中,DH=,∴EF=DH=.故答案为:.【题目点拨】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.14、5或【解题分析】

本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【题目详解】解:设第三边为,(1)若4是直角边,则第三边是斜边,由勾股定理得:,所以;(2)若4是斜边,则第三边为直角边,由勾股定理得:,所以;所以第三边的长为5或.故答案为:5或.【题目点拨】本题考查勾股定理,解题的关键是熟练掌握勾股定理,并且分情况讨论.15、【解题分析】

由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.【题目详解】∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.∴从中随机摸出一个球,摸到红球的概率是:故答案为:【题目点拨】此题考查概率公式,掌握运算法则是解题关键16、3或【解题分析】试题分析:当5为斜边时,则第三边长为:=3;当5和4为直角边时,则第三边长为:,即第三边长为3或.考点:直角三角形的勾股定理17、y2-y+1=1【解题分析】

根据换元法,可得答案.【题目详解】解:设=y,则原方程化为y+-=1两边都乘以y,得y2-y+1=1,故答案为:y2-y+1=1.【题目点拨】本题考查了解分式方程,利用换元法是解题关键.18、x<﹣1【解题分析】

首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.【题目详解】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x>ax+3的解集为x<﹣1.故答案为:x<﹣1.【题目点拨】本题考查一次函数与一元一次不等式,关键是求出A点坐标.三、解答题(共66分)19、(1);(2);(3);(4)【解题分析】

(1)先提取公因式,然后用完全平方公式进行因式分解;(2)直接用平方差公式进行因式分解;(3)先提取公因式,然后用平方差公式进行因式分解;(4)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解【题目详解】解:(1)==(2)=(3)==(4)==【题目点拨】本题考查了因式分解方法、乘法公式应用,考查推理能力与计算能力,属于基础题.20、(1)这个月应缴纳电费64元;(2)如果小张家一个月用电a度,那么这个月应缴纳电费(0.8a-45)元;(3)如果这个月缴纳电费为147.8元,那么小张家这个月用电1度.【解题分析】

(1)如果小张家一个月用电128度.128<150,所以只有一种情况,每度电0.5元,可求解.(2)a>150,两种情况都有,先算出128度电用的钱,再算出剩下的(a﹣128)度的电用的钱,加起来就为所求.(3)147.8>128×0.5,所以所用的电超过了128度电,和2中的情况类似,设此时用电a度,可列方程求解.【题目详解】(1)0.5×128=64(元)答:这个月应缴纳电费64元;(2)0.5×150+0.8(a﹣150),=75+0.8a﹣120,=0.8a﹣45,答:如果小张家一个月用电a度(a>150),那么这个月应缴纳电费(0.8a﹣45)元.(3)设此时用电a度,0.5×150+0.8(a﹣150)=147.8,0.8a﹣45=147.8,解得a=1.答:如果这个月缴纳电费为147.8元,那么小张家这个月用电1度.21、(1);(2)4【解题分析】

(1)由矩形的性质可得∠ABC=90°,AO=CO,BO=DO,由“等积法”可求解;(2)由“等积法”可求OM=ON=1,通过证明四边形AMON是正方形,即可求解.【题目详解】解:(1)如图,连接,则由矩形性质有:又∴∴解得:;(2)连接,过点作,垂足为点,又是的角平分线,、,垂足分别为点、,,在中,设,则解得:四边形是矩形又矩形是正方形正方形的周长.【题目点拨】本题考查了矩形的性质,正方形的判定,熟练掌握“等积法”是本题的关键22、A厂生产的口罩单价为2.2元,B厂生产的口罩单价为2元.【解题分析】

设B厂生产的口罩单价为x元,则A厂生产的口罩单价为(x+0.2)元,根据数量=总价÷单价结合在B厂订购的口罩数量是A厂的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论.【题目详解】解:设B厂生产的口罩单价为x元,则A厂生产的口罩单价为(x+0.2)元,

依题意得:,解得:x=2,经检验,x=2是原方程的解,且符合题意,∴x+0.2=2.2,答:A厂生产的口罩单价为2.2元,B厂生产的口罩单价为2元.【题目点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23、(1);(2);(3)见解析.【解题分析】

根据平面向量的知识,再利用三角形法即可求解.【题目详解】在此处键入公式。(1)与是平行向量;(2)=+=﹣+=﹣=+=﹣+=﹣(﹣)+=-++(3)∵+=+=如图所示,【题目点拨】该题主要考查了平面向量的知识,注意掌握三角形法的应用.24、(1)S□ABCD=2,(2)BD=2【解题分析】

(1)先求出,根据平行四边形的面积=底×高,进行计算即可.(2)在中求出,继而可得的长.【题目详解】(1)∵AB⊥AC,∴∠ABC=90°在中,则(2)∵四边形ABCD是平行四边形,∴AO=OC,B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论