版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2014年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,满分16分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)(2014•常州)﹣的相反数是()A.B.﹣C.﹣2D.22.(2分)(2014•常州)下列运算正确的是()A.a•a3=a3B.(ab)3=a3bC.(a3)2=a6D.a8÷a4=a23.(2分)(2014•常州)下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.(2分)(2014•常州)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是()A.甲B.乙C.丙D.丁5.(2分)(2014•常州)已知两圆半径分别为3cm,5cm,圆心距为7cm,则这两圆的位置关系为()A.相交B.外切C.内切D.外离6.(2分)(2014•常州)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限7.(2分)(2014•常州)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个8.(2分)(2014•常州)在平面直角坐标系xOy中,直线l经过点A(﹣3,0),点B(0,),点P的坐标为(1,0),⊙P与y轴相切于点O.若将⊙P沿x轴向左平移,平移后得到⊙P′(点P的对应点为点P′),当⊙P′与直线l相交时,横坐标为整数的点P′共有()A.1个B.2个C.3个D.4个二、填空题(本大题共9小题,每小题4分,满分20分.)9.(4分)(2014•常州)计算:|﹣1|=,2﹣2=,(﹣3)2=,=.10.(2分)(2014•常州)已知P(1,﹣2),则点P关于x轴的对称点的坐标是.11.(2分)(2014•常州)若∠α=30°,则∠α的余角等于度,sinα的值为.12.(2分)(2014•常州)已知扇形的半径为3cm,此扇形的弧长是2πcm,则此扇形的圆心角等于度,扇形的面积是.(结果保留π)13.(2分)(2014•常州)已知反比例函数y=,则自变量x的取值范围是;若式子的值为0,则x=.14.(2分)(2014•常州)已知关于x的方程x2﹣3x+m=0的一个根是1,则m=,另一个根为.15.(2分)(2014•常州)因式分解:x3﹣9xy2=.16.(2分)(2014•常州)在平面直角坐标系xOy中,一次函数y=10﹣x的图象与函数y=(x>0)的图象相交于点A,B.设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形的面积为,周长为.17.(2分)(2014•常州)在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是.三、计算题(本大题共2小题,满分18分,解答应写出文字说明、证明过程或演算步骤)18.(8分)(2014•常州)计算与化简:(1)﹣(﹣)0+2tan45°;(2)x(x﹣1)+(1﹣x)(1+x).19.(10分)(2014•常州)解不等式组和分式方程:(1);(2).四、解答题(本大题共2小题,满分15分,解答应写出文字说明、证明过程或演算步骤)20.(7分)(2014•常州)为迎接“六一”儿童节的到来,某校学生参加献爱心捐款活动,随机抽取该校部分学生的捐款数进行统计分析,相应数据的统计图如下:(1)该样本的容量是,样本中捐款15元的学生有人;(2)若该校一共有500名学生,据此样本估计该校学生的捐款总数.21.(8分)(2014•常州)一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同.(1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率;(2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,求两次摸出的球都是编号为3的球的概率.五、证明题(本大题共2小题,共12分,请在答题卡指定区域内作答,解答应写出证明过程)22.(5分)(2014•常州)已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.23.(7分)(2014•常州)已知:如图,E,F是四边形ABCD的对角线AC上的两点,AF=CE,连接DE,DF,BE,BF.四边形DEBF为平行四边形.求证:四边形ABCD是平行四边形.六、画图与应用(本大题共5小题,请在答题卡指定区域内作答,共39分)24.(7分)(2014•常州)在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.25.(7分)(2014•常州)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:x(元/件)38363432302826t(件)481216202428假定试销中每天的销售量t(件)与销售价x(元/件)之间满足一次函数.(1)试求t与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价)26.(8分)(2014•常州)我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=,<3.5>=.(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是.(3)已知x,y满足方程组,求x,y的取值范围.27.(7分)(2014•常州)在平面直角坐标系xOy中,二次函数y=﹣x2+x+2的图象与x轴交于点A,B(点B在点A的左侧),与y轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=﹣x2+x+2的图象相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由.28.(10分)(2014•常州)在平面直角坐标系xOy中,点M(,),以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP•OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值范围.
2014年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,满分16分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)(2014•常州)﹣的相反数是()A.B.﹣C.﹣2D.2【解答】解:﹣的相反数是,故选:A.2.(2分)(2014•常州)下列运算正确的是()A.a•a3=a3B.(ab)3=a3bC.(a3)2=a6D.a8÷a4=a2【解答】解:A、a•a3=a4,故A选项错误;B、(ab)3=a3b3,故B选项错误;C、(a3)2=a6,故C选项正确;D、a8÷a4=a4,故D选项错误.故选:C.3.(2分)(2014•常州)下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.(2分)(2014•常州)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是()A.甲B.乙C.丙D.丁【解答】解;∵S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S甲2<S乙2,∴成绩最稳定的是丁;故选:D.5.(2分)(2014•常州)已知两圆半径分别为3cm,5cm,圆心距为7cm,则这两圆的位置关系为()A.相交B.外切C.内切D.外离【解答】解:∵两圆的半径分别是3cm和5cm,圆心距为7cm,5﹣3=2,3+5=8,∴2<7<8,∴两圆相交.故选:A.6.(2分)(2014•常州)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限【解答】解:由题意得,k=﹣1×2=﹣2<0,∴函数的图象位于第二,四象限.故选:D.7.(2分)(2014•常州)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个【解答】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷=15千米/时;故②正确;④设乙出发x分钟后追上甲,则有:×x=×(18+x),解得x=6,故④正确;③由④知:乙第一次遇到甲时,所走的距离为:6×=6km,故③错误;所以正确的结论有三个:①②④,故选:B.8.(2分)(2014•常州)在平面直角坐标系xOy中,直线l经过点A(﹣3,0),点B(0,),点P的坐标为(1,0),⊙P与y轴相切于点O.若将⊙P沿x轴向左平移,平移后得到⊙P′(点P的对应点为点P′),当⊙P′与直线l相交时,横坐标为整数的点P′共有()A.1个B.2个C.3个D.4个【解答】解:如图所示,∵点P的坐标为(1,0),⊙P与y轴相切于点O,∴⊙P的半径是1,若⊙P与AB相切时,设切点为D,由点A(﹣3,0),点B(0,),∴OA=3,OB=,由勾股定理得:AB=2,∠DAM=30°,设平移后圆与直线AB第一次相切时圆心为M(即对应的P′),∴MD⊥AB,MD=1,又因为∠DAM=30°,∴AM=2,M点的坐标为(﹣1,0),即对应的P′点的坐标为(﹣1,0),同理可得圆与直线第二次相切时圆心N的坐标为(﹣5,0),所以当⊙P′与直线l相交时,横坐标为整数的点P′的横坐标可以是﹣2,﹣3,﹣4共三个.故选:C.二、填空题(本大题共9小题,每小题4分,满分20分.)9.(4分)(2014•常州)计算:|﹣1|=1,2﹣2=,(﹣3)2=9,=﹣2.【解答】解::|﹣1|=1,2﹣2=,(﹣3)2=9,=﹣2.故答案为:1,,9,﹣2.10.(2分)(2014•常州)已知P(1,﹣2),则点P关于x轴的对称点的坐标是(1,2).【解答】解:∵P(1,﹣2),∴点P关于x轴的对称点的坐标是:(1,2).故答案为:(1,2).11.(2分)(2014•常州)若∠α=30°,则∠α的余角等于60度,sinα的值为.【解答】6解:∵∠A=30°,∴∠A的余角是:90°﹣30°=60°;sinα=sin30°=,故答案为:60,.12.(2分)(2014•常州)已知扇形的半径为3cm,此扇形的弧长是2πcm,则此扇形的圆心角等于120度,扇形的面积是3πcm2.(结果保留π)【解答】解:设扇形的圆心角的度数是n°,则=2π,解得:n=120,扇形的面积是:=3π(cm2).故答案是:120,3πcm2.13.(2分)(2014•常州)已知反比例函数y=,则自变量x的取值范围是x≠0;若式子的值为0,则x=﹣3.【解答】解:反比例函数y=的自变量x的取值范围是x≠0,=0,解得x=﹣3.故答案为:x≠0,﹣3.14.(2分)(2014•常州)已知关于x的方程x2﹣3x+m=0的一个根是1,则m=2,另一个根为2.【解答】解:将x=1代入方程得:1﹣3+m=0,解得:m=2,方程为x2﹣3x+2=0,即(x﹣1)(x﹣2)=0,解得:x=1或x=2,则另一根为2.故答案为:2,2.15.(2分)(2014•常州)因式分解:x3﹣9xy2=x(x+3y)(x﹣3y).【解答】解:x3﹣9xy2,=x(x2﹣9y2),=x(x+3y)(x﹣3y).16.(2分)(2014•常州)在平面直角坐标系xOy中,一次函数y=10﹣x的图象与函数y=(x>0)的图象相交于点A,B.设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形的面积为6,周长为20.【解答】解:∵点A在函数y=(x>0)上,∴x1y1=6,又∵点A在函数y=10﹣x上,∴x1+y1=10,∴矩形的周长为2(x1+y1)=20,故答案为:6,20.17.(2分)(2014•常州)在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是(﹣2,0)或(4,0).【解答】解:在Rt△AOB中,由tan∠ABO=3,可得OA=3OB,则一次函数y=kx+b中k=±.∵一次函数y=kx+b(k≠0)的图象过点P(1,1),∴当k=时,求可得b=;k=﹣时,求可得b=.即一次函数的解析式为y=x+或y=﹣x+.令y=0,则x=﹣2或4,∴点A的坐标是(﹣2,0)或(4,0).故答案为:(﹣2,0)或(4,0).三、计算题(本大题共2小题,满分18分,解答应写出文字说明、证明过程或演算步骤)18.(8分)(2014•常州)计算与化简:(1)﹣(﹣)0+2tan45°;(2)x(x﹣1)+(1﹣x)(1+x).【解答】解:(1)原式=2﹣1+2×1=2﹣1+2=3;(2)原式=x2﹣x+1﹣x2=1﹣x.19.(10分)(2014•常州)解不等式组和分式方程:(1);(2).【解答】解:(1),由①得:x>﹣1,由②得:x>﹣2,则不等式组的解集为:x>﹣1;(2)去分母得:3x+2=x﹣1,移项得:3x﹣x=﹣1﹣2,即2x=﹣3,解得:x=﹣,经检验x=﹣是分式方程的解.四、解答题(本大题共2小题,满分15分,解答应写出文字说明、证明过程或演算步骤)20.(7分)(2014•常州)为迎接“六一”儿童节的到来,某校学生参加献爱心捐款活动,随机抽取该校部分学生的捐款数进行统计分析,相应数据的统计图如下:(1)该样本的容量是50,样本中捐款15元的学生有10人;(2)若该校一共有500名学生,据此样本估计该校学生的捐款总数.【解答】解:(1)15÷30%=50(人),50﹣15﹣25=10(人),故答案为:50,10;(2)平均每人的捐款数为:×(5×15+10×25+15×10)=9.5(元),9.5×500=4750(元),答:该校学生的捐款总数为4750元.21.(8分)(2014•常州)一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同.(1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率;(2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,求两次摸出的球都是编号为3的球的概率.【解答】解:(1)从箱子中随机摸出一个球,摸出的球是编号为1的球的概率为:;(2)画树状图如下:共有9种等可能的结果,两次摸出的球都是编号为3的球的概率为.五、证明题(本大题共2小题,共12分,请在答题卡指定区域内作答,解答应写出证明过程)22.(5分)(2014•常州)已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.【解答】证明:∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).23.(7分)(2014•常州)已知:如图,E,F是四边形ABCD的对角线AC上的两点,AF=CE,连接DE,DF,BE,BF.四边形DEBF为平行四边形.求证:四边形ABCD是平行四边形.【解答】证明:如图,连结BD交AC于点O.∵四边形DEBF为平行四边形,∴OD=OB,OE=OF,∵AF=CE,∴AF﹣EF=CE﹣EF,即AE=CF,∴AE+OE=CF+OF,即OA=OC∴四边形ABCD是平行四边形.六、画图与应用(本大题共5小题,请在答题卡指定区域内作答,共39分)24.(7分)(2014•常州)在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.【解答】解:(1)△OMN如图所示;(2)△A′B′C′如图所示;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知:B′C′平分∠A′B′O,且C′O⊥OB′,所以,B′F=B′O=OE=x,FC′=OC′=OD=3,∵A′C′=AC=5,∴A′F==4,∴A′B′=x+4,A′O=5+3=8,在Rt△A′B′O中,x2+82=(4+x)2,解得x=6,即OE=6.25.(7分)(2014•常州)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:x(元/件)38363432302826t(件)481216202428假定试销中每天的销售量t(件)与销售价x(元/件)之间满足一次函数.(1)试求t与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价)【解答】解:(1)设t与x之间的函数关系式为:t=kx+b,因为函数的图象经过(38,4)和(36,8)两点,∴,解得:.故t=﹣2x+80.(2)设每天的毛利润为W元,每件服装销售的毛利润为(x﹣20)元,每天售出(80﹣2x)件,则W=(x﹣20)(80﹣2x)=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,当x=30时,获得的毛利润最大,最大毛利润为200元.26.(8分)(2014•常州)我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=﹣5,<3.5>=4.(2)若[x]=2,则x的取值范围是2≤x<3;若<y>=﹣1,则y的取值范围是﹣2≤y<﹣1.(3)已知x,y满足方程组,求x,y的取值范围.【解答】解:(1)由题意得,[﹣4.5]=﹣5,<3.5>=4;(2)∵[x]=2,∴x的取值范围是2≤x<3;∵<y>=﹣1,∴y的取值范围是﹣2≤y<﹣1;(3)解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.27.(7分)(2014•常州)在平面直角坐标系xOy中,二次函数y=﹣x2+x+2的图象与x轴交于点A,B(点B在点A的左侧),与y轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=﹣x2+x+2的图象相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由.【解答】解:(1)当y=0时,有,解得:x1=4,x2=﹣1,∴A、B两点的坐标分别为(4,0)和(﹣1,0).(2)∵⊙Q与x轴相切,且与交于D、E两点,∴圆心Q位于直线与抛物线对称轴的交点处,∵抛物线的对称轴为,⊙Q的半径为H点的纵坐标m(m>0),∴D、E两点的坐标分别为:(﹣m,m),(+m,m)∵E点在二次函数的图象上,∴,解得或(不合题意,舍去).(3)存在.①如图1,当∠ACF=90°,AC=FC时,过点F作FG⊥y轴于G,∴∠AOC=∠CGF=90°,∵∠ACO+∠FCG=90°,∠GFC+∠FCG=90°,∴∠ACO=∠CFG,∴△ACO≌△CFG,∴CG=AO=4,∵CO=2,∴m=OG=2+4=6;反向延长FC,使得CF=CF′,此时△ACF′亦为等腰直角三角形,易得yC﹣yF′=CG=4,∴m=CO﹣4=2﹣4=﹣2.②如图2,当∠CAF=90°,AC=AF时,过点F作FP⊥x轴于P,∵∠AOC=∠APF=90°,∠ACO+∠OAC=90°,∠FAP+∠OAC=90°,∴∠ACO=∠FAP,∴△ACO≌△∠FAP,∴FP=AO=4,∴m=FP=4;反向延长FA,使得AF=AF′,此时△ACF’亦为等腰直角三角形,易得yA﹣yF′=FP=4,∴m=0﹣4=﹣4.③如图3,当∠AFC=90°,FA=FC时,则F点一定在AC的中垂线上,此时存在两个点分别记为F,F′,分别过F,F′两点作x轴、y轴的垂线,分别交于E,G,D,H.∵∠DFC+∠CFE=∠CFE+∠EFA=90°,∴∠DFC=∠EFA,∵∠CDF=∠AEF,CF=AF,∴△CDF≌△AEF,∴CD=AE,DF=EF,∴四边形OEFD为正方形,∴OA=OE+AE=OD+AE=OC+CD+AE=OC+2CD,∴4=2+2•CD,∴CD=1,∴m=OC+CD=2+1=3.∵∠HF′C+∠CGF′=∠CF′G+∠GF′A,∴∠HF′C=∠GF′A,∵∠HF′C=∠GF′A,CF′=AF′,∴△HF′C≌△GF′A,∴HF′=GF′,CH=AG,∴四边形OHF′G为正方形,∴OH=CH﹣CO=AG﹣CO=AO﹣OG﹣CO=AO﹣OH﹣CO=4﹣OH﹣2,∴OH=1,∴m=﹣1.∵y=﹣x2+x+2=﹣(x﹣)2+,∴y的最大值为.∵直线l与抛物线有两个交点,∴m<.∴m可取值为:﹣4、﹣2、﹣1或3.综上所述,直线l上存在一点F,使得△ACF是等腰直角三角形,m的值为﹣4、﹣2、﹣1或3.28.(10分)(2014•常州)在平面直角坐标系xOy中,点M(,),以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP•OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值范围.【解答】解:(1)过点M作MH⊥OD于点H,∵点M(,),∴OH=MH=,∴∠MOD=45°,∵∠AOD=90°,∴∠AOM=45°,∵OM=AM,∴∠OAM=∠AOM=45°,∴∠AMO=90°,∴∠AMB=90°;(2)①∵OH=MH=,MH⊥OD,∴OM==2,OD=2OH=2,∴OB=4,∵动点P与点B重合时,OP•OQ=20,∴OQ=5,∵∠OQE=90°,∠POE=45°,∴OE=5,∴E点坐标为(5,0)②∵OD=2,Q的纵坐标为t,∴S=.如图2,当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,∵OP=4,OP•OQ=20,∴OQ=5,∵∠OFC=90°,∠QOD=45°,∴t=QF=,此时S=;如图3,当动点P与A点重合时,Q点在y轴上,∴OP=2,∵OP•OQ=20,∴t=OQ=5,此时S=;∴S的取值范围为5≤S≤10.
参与本试卷答题和审题的老师有:sd2011;wkd;HJJ;lantin;sjzx;星期八;郝老师;MMCH;qingli;gbl210;wdzyzlhx;zhjh;HLing;wdxwwzy;zjx111;自由人;sks;nhx600;wd1899;caicl;SPIDER;zcx(排名不分先后)菁优网2016年7月19日
2015年江苏省常州市中考数学试卷一、选择题(每小题2分,共16分)1.(2分)﹣3的绝对值是()A.3 B.﹣3 C. D.2.(2分)要使分式有意义,则x的取值范围是()A.x>2 B.x<2 C.x≠﹣2 D.x≠23.(2分)下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.4.(2分)如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70° B.60° C.50° D.40°5.(2分)如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB6.(2分)已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b7.(2分)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣18.(2分)将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A.cm2 B.8cm2 C.cm2 D.16cm2二、填空题(每小题2分,共20分)9.(2分)计算(π﹣1)0+2﹣1=.10.(2分)太阳半径约为696000千米,数字696000用科学记数法表示为.11.(2分)分解因式:2x2﹣2y2=.12.(2分)已知扇形的圆心角为120°,弧长为6π,则扇形的面积是.13.(2分)如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是.14.(2分)已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.15.(2分)二次函数y=﹣x2+2x﹣3图象的顶点坐标是.16.(2分)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.17.(2分)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想.4=2+2;12=5+7;6=3+3;14=3+11=7+7;8=3+5;16=3+13=5+11;10=3+7=5+518=5+13=7+11;…通过这组等式,你发现的规律是(请用文字语言表达).18.(2分)如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.三、解答题(共10小题,共84分)19.(6分)先化简,再求值:(x+1)2﹣x(2﹣x),其中x=2.20.(8分)解方程和不等式组:(1);(2).21.(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.22.(8分)甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.23.(8分)如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.24.(8分)已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?25.(8分)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.26.(10分)设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.理由:连接AH,EH.∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED,∴△ADH∽.∴,即DH2=AD×DE.又∵DE=DC∴DH2=,即正方形DFGH与矩形ABCD等积.(2)操作实践平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.如图②,请用尺规作图作出与▱ABCD等积的矩形(不要求写具体作法,保留作图痕迹).(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的(填写图形名称),再转化为等积的正方形.如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n﹣1边形,…,直至转化为等积的三角形,从而可以化方.如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).27.(10分)如图,一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与△OAP外接圆的交点,点P、Q与点A都不重合.(1)写出点A的坐标;(2)当点P在直线l上运动时,是否存在点P使得△OQB与△APQ全等?如果存在,求出点P的坐标;如果不存在,请说明理由.(3)若点M在直线l上,且∠POM=90°,记△OAP外接圆和△OAM外接圆的面积分别是S1、S2,求的值.28.(10分)如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.
2015年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.(2分)﹣3的绝对值是()A.3 B.﹣3 C. D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2分)要使分式有意义,则x的取值范围是()A.x>2 B.x<2 C.x≠﹣2 D.x≠2【专题】11:计算题.【分析】根据分式有意义得到分母不为0,即可求出x的范围.【解答】解:要使分式有意义,须有x﹣2≠0,即x≠2,故选D.【点评】此题考查了分式有意义的条件,分式有意义的条件为:分母不为0.3.(2分)下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.(2分)如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70° B.60° C.50° D.40°【专题】11:计算题.【分析】由BC与AE垂直,得到三角形ABC为直角三角形,利用直角三角形两锐角互余,求出∠A的度数,再利用两直线平行同位角相等即可求出∠ECD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,在Rt△ABC中,∠B=40°,∴∠A=90°﹣∠B=50°,∵CD∥AB,∴∠ECD=∠A=50°,故选C.【点评】此题考查了平行线的性质,以及垂线,熟练掌握平行线的性质是解本题的关键.5.(2分)如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB【分析】根据平行四边形的性质:对边平行且相等,对角线互相平分进行判断即可.【解答】解:对角线不一定相等,A错误;对角线不一定互相垂直,B错误;对角线互相平分,C正确;对角线与边不一定垂直,D错误.故选:C.【点评】本题考查度数平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.6.(2分)已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b【专题】11:计算题.【分析】将a,b,c变形后,根据分母大的反而小比较大小即可.【解答】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选A.【点评】此题考查了实数比较大小,将a,b,c进行适当的变形是解本题的关键.7.(2分)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣1【分析】根据二次函数的性质,利用二次函数的对称轴不大于1列式计算即可得解.【解答】解:抛物线的对称轴为直线x=﹣,∵当x>1时,y的值随x值的增大而增大,由图象可知:﹣≤1,解得m≥﹣1.故选D.【点评】本题考查了二次函数的性质,主要利用了二次函数的增减性,熟记性质并列出不等式是解题的关键.8.(2分)将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A.cm2 B.8cm2 C.cm2 D.16cm2【专题】16:压轴题.【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=×4×4=8cm2.故选:B.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.二、填空题(每小题2分,共20分)9.(2分)计算(π﹣1)0+2﹣1=.【分析】分别根据零指数幂,负整数指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:(π﹣1)0+2﹣1=1+=.故答案为:.【点评】本题主要考查了零指数幂,负整数指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.10.(2分)太阳半径约为696000千米,数字696000用科学记数法表示为6.96×105.【专题】12:应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中696000有6位整数,n=6﹣1=5.【解答】解:696000=6.96×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2分)分解因式:2x2﹣2y2=2(x+y)(x﹣y).【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2y2=2(x2﹣y2)=2(x+y)(x﹣y).故答案为:2(x+y)(x﹣y).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.(2分)已知扇形的圆心角为120°,弧长为6π,则扇形的面积是27π.【分析】利用弧长公式即可求扇形的半径,进而利用扇形的面积公式即可求得扇形的面积.【解答】解:设扇形的半径为r.则=6π,解得r=9,∴扇形的面积==27π.故答案为:27π.【点评】此题主要考查了扇形面积求法,用到的知识点为:扇形的弧长公式l=;扇形的面积公式S=.13.(2分)如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是6.【分析】由平行可得对应线段成比例,即AD:AB=DE:BC,再把数值代入可求得BC.【解答】解:∵DE∥BC,∴,∵AD:DB=1:2,DE=2,∴,解得BC=6.故答案为:6.【点评】本题主要考查平行线分线段成比例的性质,掌握平行线分线段成比例中的对应线段是解题的关键.14.(2分)已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.【专题】11:计算题.【分析】把x=2代入方程计算即可求出a的值.【解答】解:把x=2代入方程得:3a=a+2,解得:a=.故答案为:.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.(2分)二次函数y=﹣x2+2x﹣3图象的顶点坐标是(1,﹣2).【分析】此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.【解答】解:∵y=﹣x2+2x﹣3=﹣(x2﹣2x+1)﹣2=﹣(x﹣1)2﹣2,故顶点的坐标是(1,﹣2).故答案为(1,﹣2).【点评】本题考查了二次函数的性质,求抛物线的顶点坐标有两种方法①公式法,②配方法.16.(2分)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是(400,800).【分析】根据题意结合全等三角形的判定与性质得出△AOD≌△ACB(SAS),进而得出C,A,D也在一条直线上,求出CD的长即可得出C点坐标.【解答】解:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中∵,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC=AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).【点评】此题主要考查了全等三角形的判定与性质以及勾股定理,得出C,A,D也在一条直线上是解题关键.17.(2分)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想.4=2+2;12=5+7;6=3+3;14=3+11=7+7;8=3+5;16=3+13=5+11;10=3+7=5+518=5+13=7+11;…通过这组等式,你发现的规律是所有大于2的偶数都可以写成两个素数之和(请用文字语言表达).【分析】根据以上等式得出规律进行解答即可.【解答】解:此规律用文字语言表达为:所有大于2的偶数都可以写成两个素数之和,故答案为:所有大于2的偶数都可以写成两个素数之和【点评】此题考查规律问题,关键是根据几个等式寻找规律再用文字表达即可.18.(2分)如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.【专题】16:压轴题.【分析】将△ACD绕点C逆时针旋转120°得△CBE,根据旋转的性质得出∠E=∠CAD=30°,BE=AD=5,AC=CE,求出A、B、E三点共线,解直角三角形求出即可;过C作CE⊥AB于E,CF⊥AD于F,得出∠E=∠CFD=∠CFA=90°,推出=,求出∠BAC=∠DAC,BC=CD,求出CE=CF,根据圆内接四边形性质求出∠D=∠CBE,证△CBE≌△CDF,推出BE=DF,证△AEC≌△AFC,推出AE=AF,设BE=DF=x,得出5=x+3+x,求出x,解直角三角形求出即可.【解答】解:解法一、∵A、B、C、D四点共圆,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵∠BAD=60°,AC平分∠BAD,∴∠CAD=∠CAB=30°,如图1,将△ACD绕点C逆时针旋转120°得△CBE,则∠E=∠CAD=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣CAB+∠ACB)+(180°﹣∠E﹣∠BCE)=180°,∴A、B、E三点共线,过C作CM⊥AE于M,∵AC=CE,∴AM=EM=×(5+3)=4,在Rt△AMC中,AC===;解法二、过C作CE⊥AB于E,CF⊥AD于F,则∠E=∠CFD=∠CFA=90°,∵点C为弧BD的中点,∴=,∴∠BAC=∠DAC,BC=CD,∵CE⊥AB,CF⊥AD,∴CE=CF,∵A、B、C、D四点共圆,∴∠D=∠CBE,在△CBE和△CDF中∴△CBE≌△CDF,∴BE=DF,在△AEC和△AFC中∴△AEC≌△AFC,∴AE=AF,设BE=DF=x,∵AB=3,AD=5,∴AE=AF=x+3,∴5=x+3+x,解得:x=1,即AE=4,∴AC==,故答案为:.【点评】本题考查了圆心角、弧、弦之间的关系,圆内接四边形性质,解直角三角形,全等三角形的性质和判定的应用,能正确作出辅助线是解此题的关键,综合性比较强,难度适中.三、解答题(共10小题,共84分)19.(6分)先化简,再求值:(x+1)2﹣x(2﹣x),其中x=2.【专题】11:计算题.【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+2x+1﹣2x+x2=2x2+1,当x=2时,原式=8+1=9.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.(8分)解方程和不等式组:(1);(2).【专题】11:计算题.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可求出解集.【解答】解:(1)去分母得:x=6x﹣2+1,解得:x=,经检验x=是分式方程的解;(2),由①得:x>﹣2,由②得:x<3,则不等式组的解集为﹣2<x<3.【点评】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.【分析】(1)利用0.5小时的人数为:100人,所占比例为:20%,即可求出样本容量;(2)利用样本容量乘以1.5小时的百分数,即可求出1.5小时的人数,画图即可;(3)计算出该市中小学生一天中阳光体育运动的平均时间即可.【解答】解:(1)由题意可得:0.5小时的人数为:100人,所占比例为:20%,∴本次调查共抽样了500名学生;(2)1.5小时的人数为:500×24%=120(人)如图所示:(3)根据题意得:,即该市中小学生一天中阳光体育运动的平均时间约1小时.【点评】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.22.(8分)甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.【专题】11:计算题.【分析】(1)画树状图得出所有等可能的情况数,找出甲第一个出场的情况数,即可求出所求的概率;(2)找出甲比乙先出场的情况数,即可求出所求的概率.【解答】解:(1)画树状图如下:所有等可能的情况有6种,其中甲第一个出场的情况有2种,则P(甲第一个出场)==;(2)甲比乙先出场的情况有3种,则P(甲比乙先出场)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【专题】14:证明题.【分析】(1)由平行四边形的性质得出∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,由等边三角形的性质得出BE=BC,DF=CD,∠EBC=∠CDF=60°,证出∠ABE=∠FDA,AB=DF,BE=AD,根据SAS证明△ABE≌△FDA,得出对应边相等即可;(2)由全等三角形的性质得出∠AEB=∠FAD,求出∠AEB+∠BAE=60°,得出∠FAD+∠BAE=60°,即可得出∠EAF的度数.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,∵△BCE和△CDF都是正三角形,∴BE=BC,DF=CD,∠EBC=∠CDF=60°,∴∠ABE=∠FDA,AB=DF,BE=AD,在△ABE和△FDA中,,∴△ABE≌△FDA(SAS),∴AE=AF;(2)解:∵△ABE≌△FDA,∴∠AEB=∠FAD,∵∠ABE=60°+60°=120°,∴∠AEB+∠BAE=60°,∴∠FAD+∠BAE=60°,∴∠EAF=120°﹣60°=60°.【点评】本题考查了平行四边形的性质、等边三角形的性质、全等三角形的判定与性质;熟练掌握平行四边形和等边三角形的性质,证明三角形全等是解决问题的关键.24.(8分)已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?【分析】(1)根据题意,不超过3公里计费为m元,由图示可知光明中学和市图书馆相距2公里,可由此得出m,由出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.当x>3时,由收费与路程之间的关系就可以求出结论;(2)分别计算小张所剩钱数和返程所需钱数,即可得出结论.【解答】解:(1)∵由图示可知光明中学和市图书馆相距2公里,付费9元,∴m=9,∵从市图书馆乘出租车去光明电影院,路程5公里,付费12.6元,∴(5﹣3)n+9=12.6,解得:n=1.8.∴车费y(元)与路程x(公里)(x>3)之间的函数关系式为:y=1.8(x﹣3)+9=1.8x+3.6(x>3).(2)小张剩下坐车的钱数为:75﹣15﹣25﹣9﹣12.6=13.4(元),乘出租车从光明电影院返回光明中学的费用:1.8×7+3.6=16.2(元)∵13.4<16.2,故小张剩下的现金不够乘出租车从光明电影院返回光明中学.【点评】本题考查了分段函数,一次函数的解析式,由一次函数的解析式求自变量和函数值,解答时求出函数的解析式是关键25.(8分)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.【分析】(1)在四边形ABCD中,由∠A=∠C=45°,∠ADB=∠ABC=105°,得∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,求得AE,利用锐角三角函数得BE,得AB;(2)设DE=x,利用(1)的某些结论,特殊角的三角函数和勾股定理,表示AB,CD,得结果.【解答】解:(1)过D点作DE⊥AB,过点B作BF⊥CD,∵∠A=∠C=45°,∠ADB=∠ABC=105°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=360°﹣45°﹣45°﹣105°=165°,∴∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,∵AD=2,∴AE=DE==,∵∠ABC=105°,∴∠ABD=105°﹣45°﹣30°=30°,∴BE===,∴AB=;(2)设DE=x,则AE=x,BE===,∴BD==2x,∵∠BDF=60°,∴∠DBF=30°,∴DF==x,∴BF===,∴CF=,∵AB=AE+BE=,CD=DF+CF=x,AB+CD=2+2,∴AB=+1【点评】本题考查了勾股定理、等腰直角三角形的判定和性质、含有30°角的直角三角形的性质,解题的关键是作辅助线DE、BF,构造直角三角形,求出相应角的度数.26.(10分)设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.理由:连接AH,EH.∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED,∴△ADH∽△HDE.∴,即DH2=AD×DE.又∵DE=DC∴DH2=AD×DC,即正方形DFGH与矩形ABCD等积.(2)操作实践平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.如图②,请用尺规作图作出与▱ABCD等积的矩形(不要求写具体作法,保留作图痕迹).(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的矩形(填写图形名称),再转化为等积的正方形.如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n﹣1边形,…,直至转化为等积的三角形,从而可以化方.如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).【专题】23:新定义.【分析】(1)首先根据相似三角形的判定方法,可得△ADH∽△HDE;然后根据等量代换,可得DH2=AD×DC,据此判断即可.(2)首先把平行四边形ABCD转化为等积的矩形ADMN,然后延长AD到E,使DE=DM,以AE为直径作半圆.延长MD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABMN等积,所以正方形DFGH与平行四边形ABCD等积,据此解答即可.(3)首先以三角形的底为矩形的长,以三角形的高的一半为矩形的宽,将△ABC转化为等积的矩形MBCD;然后延长MD到E,使DE=DC,以ME为直径作半圆.延长CD交半圆于点H,则DH即为与△ABC等积的正方形的一条边.(4)首先根据AG∥EH,判断出AG=2EH,然后根据CF=2DF,可得CF•EH=DF•AG,据此判断出S△CEF=S△ADF,S△CDI=S△AEI,所以S△BCE=S四边形ABCD,即△BCE与四边形ABCD等积,据此解答即可.【解答】解:(1)如图①,连接AH,EH,∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠EDH=90°,∴∠HAD+∠AHD=90°,∴∠AHD=∠HED,∴△ADH∽△HDE.∴,即DH2=AD×DE.又∵DE=DC,∴DH2=AD×DC,即正方形DFGH与矩形ABCD等积.(2)作法:①过A、D作AN、DM分别垂直BC于N、M;②延长AD,取DE=DM;③以AE为直径作半圆O;④延长MD交半圆O于H;⑤以H、D作正方形HDFG,则正方形HDFG为平行四边形ABCD的等积正方形.证明:∵矩形ADMN的长和宽分别等于平行四边形ABCD的底和高,∴矩形ADMN的面积等于平行四边形ABCD的面积,∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠EDH=90°,∴∠HAD+∠AHD=90°,∴∠AHD=∠HED,∴△ADH∽△HDE.∴,即DH2=AD×DE.又∵DE=DM,∴DH2=AD×DM,即正方形DFGH与矩形ABMN等积,∴正方形DFGH与平行四边形ABCD等积.(3)作法:①过A点作AD垂直BC于D;②作AD的垂直平分线,取AD中点E;③过E作BC平行线,作长方形BCGF,则S矩形BCGF=S△ABC;其他步骤同(2)可作出其等积正方形.(4)作法:①过A点作BD平行线l;②延长CD交平行线与E点;③连接BE,则S四边形ABCD=S△EBC,同(3)可作出其等积正方形.△BCE与四边形ABCD等积,理由如下:∵BD∥l,∴S△ABD=S△EBD,∴S△BCE=S四边形ABCD,即△EBC与四边形ABCD等积.故答案为:△HDE、AD×DC、矩形.【点评】(1)此题主要考查了相似形综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,要熟练掌握.(2)此题还考查了矩形、三角形的面积的求法,以及对等积转化的理解,要熟练掌握.27.(10分)如图,一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与△OAP外接圆的交点,点P、Q与点A都不重合.(1)写出点A的坐标;(2)当点P在直线l上运动时,是否存在点P使得△OQB与△APQ全等?如果存在,求出点P的坐标;如果不存在,请说明理由.(3)若点M在直线l上,且∠POM=90°,记△OAP外接圆和△OAM外接圆的面积分别是S1、S2,求的值.【专题】16:压轴题.【分析】(1)将y=0代入y=﹣x+4,求得x的值,从而得到点A的坐标;(2)首先根据题意画出图形,然后在Rt△BOA中,由勾股定理得:AB的长度,然后由全等三角形的性质求得QA的长度,从而得到BQ的长,然后根据PA=BQ求得PA的长度,从而可求得点P的坐标;(3)首先根据题意画出图形,设AP=m,由△OAM∽△PAO,可求得AM的长度,然后根据勾股定理可求得两圆的直径(用含m的式子表示),然后利用圆的面积公式求得两圆的面积,最后代入所求代数式求解即可.【解答】解(1)令y=0,得:﹣x+4=0,解得x=4,即点A的坐标为(4,0);(2)存在.理由:第一种情况,如下图一所示:∵∠OBA=∠BAP,∴它们是对应角,∴BQ=PA,将x=0代入y=﹣x+4得:y=4,∴OB=4,由(1)可知OA=4,在Rt△BOA中,由勾股定理得:AB==4.∵△BOQ≌△AQP.∴QA=OB=4,BQ=PA.∵BQ=AB﹣AQ=4﹣4,∴PA=4﹣4.∴点P的坐标为(4,4﹣4);第二种情况,如下图二所示:∵△OQB≌△APQ,∴AQ=BO=4,AB=,BQ=AP,∴BQ=AB+AQ=,∴AP=4,∴点P的坐标为:(4,﹣4);由上可得,点P的坐标为:(4,)或(4,).(3)如图所示:令PA=a,MA=b,△OAP外接圆的圆心为O1,△OAM的外接圆的圆心为O2,∴OP2=OA2+PA2=42+a2=16+a2,OM2=OA2+MA2=42+b2=16+b2,在Rt△POM中,PM2=OP2+OM2=a2+16+b2+16,又∵PM2=(PA+AM)2=(a+b)2=a2+2ab+b2,∴ab=16,∵O1A2=O1Q2+QA2=()2+()2=a2+4,O2A2=O2N2+NA2=()2+()2=b2+4,∴S1=π×O1A2=(a2+4)π,S2=π×O2A2=(b2+4)π,∴===×=.【点评】本题主要考查的是全等三角形的性质,相似三角形的性质和判定以及勾股定理和一次函数的综合应用,根据题意画出图形,利用全等三角形和相似三角形的性质和判定求得AM和PA的长度是解题的关键.28.(10分)如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.【专题】15:综合题;16:压轴题.【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△PAB=2S△AOP,要求△PAB的面积,只需求△PAO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ=∠PBQ.【解答】解:(1)k=4,S△PAB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y=x,得到点B的坐标为(4,1),把点B(4,1)代入y=,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC=OC•AR+OC•PS=×3×4+×3×1=,∴S△PAB=2S△AOP=15;(2)过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y=,设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y=x+﹣1,联立,解得直线PB的方程为y=﹣x++1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)∠PAQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y=x+﹣1.当y=0时,x+﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠PAQ=∠PBQ.【点评】本题主要考查了用待定系数法求反比例函数及一次函数的解析式、求反比例函数及一次函数图象的交点,三角形的中线平分三角形的面积、垂直平分线的性质、等腰三角形的判定与性质、三角形外角的性质、对顶角相等等知识,运用(2)中的结论及(2)中的解题方法是解决第(3)小题的关键.
2016年江苏省常州市中考数学试卷一、选择题(共8小题,每小题2分,满分16分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.计算3﹣(﹣1)的结果是()A.﹣4 B.﹣2 C.2 D.43.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体 B.三棱锥 C.球体 D.圆锥体4.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cm B.5cm C.6cm D.10cm6.若x>y,则下列不等式中不一定成立的是()A.x+1>y+1 B.2x>2y C. D.x2>y27.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.78.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x…﹣1024…y1…0135…x…﹣1134…y2…0﹣405…当y2>y1时,自变量x的取值范围是()A.x<﹣1 B.x>4 C.﹣1<x<4 D.x<﹣1或x>4二、填空题(共10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出车位特许经营协议:2024样本
- 某某生态农业科技示范场及技术培训示范基地可行性研究报告
- 购买资产合同范本
- 19 20级铁路信息化系统学习通超星期末考试答案章节答案2024年
- Service Marketing学习通超星期末考试答案章节答案2024年
- 版权 合作合同范本
- 咸阳市秦都区彩虹第三学校招聘真题
- 2024年股权转让解除协议样本
- 2023年云南省山东大学选调考试真题
- 丽水市各级机关单位录用公务员真题
- 2024年秋季新人教版七年级数学上册教学课件 第五章 一元一次方程 5.3实际问题与一元一次方程(第4课时)
- 清淡的晚餐(课件)六年级上册劳动北京版
- 妇科内分泌疾病诊断与治疗考核试卷
- 城镇雨污分流项目可行性研究报告
- 《19 海滨小城》公开课一等奖创新教学设计及反思
- 公司数据安全与保护管理制度
- 广西特种作业实际操作考评手册(试行)-低压电工作业考评分册
- 超声技能操作评分表
- 顺产一病一品
- 《分子和原子》参考课件
- 河南中职语文-基础模块上册-(高教版)第一单元测试题含答案
评论
0/150
提交评论