广东省广州市历年中考数学试卷真题合集(共6套)_第1页
广东省广州市历年中考数学试卷真题合集(共6套)_第2页
广东省广州市历年中考数学试卷真题合集(共6套)_第3页
广东省广州市历年中考数学试卷真题合集(共6套)_第4页
广东省广州市历年中考数学试卷真题合集(共6套)_第5页
已阅读5页,还剩179页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2014年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)a(a≠0)的相反数是()A.﹣a B.a2 C.|a| D.2.(3分)下列图形中,是中心对称图形的是()A. B. C. D.3.(3分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A. B. C. D.4.(3分)下列运算正确的是()A.5ab﹣ab=4 B.+= C.a6÷a2=a4 D.(a2b)3=a5b35.(3分)已知⊙O1和⊙O2的半径分别为2cm和3cm,若O1O2=7cm,则⊙O1和⊙O2的位置关系是()A.外离 B.外切 C.内切 D.相交6.(3分)计算,结果是()A.x﹣2 B.x+2 C. D.7.(3分)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是()A.中位数是8 B.众数是9 C.平均数是8 D.极差是78.(3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A. B.2 C. D.29.(3分)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<010.(3分)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(共6小题,每小题3分,满分18分)11.(3分)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.12.(3分)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为.13.(3分)代数式有意义时,x应满足的条件为.14.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为.(结果保留π)15.(3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:,该逆命题是命题(填“真”或“假”).16.(3分)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.三、解答题(共9小题,满分102分)17.(9分)解不等式:5x﹣2≤3x,并在数轴上表示解集.18.(9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.19.(10分)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.20.(10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远90.18三级蛙跳12a一分钟跳绳80.16投掷实心球b0.32推铅球50.10合计501(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.21.(12分)已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.22.(12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(12分)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.24.(14分)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.25.(14分)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.

2014年广东省广州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)a(a≠0)的相反数是()A.﹣a B.a2 C.|a| D.【考点】14:相反数.【分析】直接根据相反数的定义求解.【解答】解:a的相反数为﹣a.故选:A.【点评】本题考查了相反数:a的相反数为﹣a,正确掌握相反数的定义是解题关键.2.(3分)下列图形中,是中心对称图形的是()A. B. C. D.【考点】R5:中心对称图形.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选:C.【点评】本题考查了对中心对称图形的定义,能熟知中心对称图形的定义是解此题的关键.3.(3分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A. B. C. D.【考点】T1:锐角三角函数的定义.【专题】24:网格型.【分析】在直角△ABC中利用正切的定义即可求解.【解答】解:在直角△ABC中,∵∠ABC=90°,∴tanA==.故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.(3分)下列运算正确的是()A.5ab﹣ab=4 B.+= C.a6÷a2=a4 D.(a2b)3=a5b3【考点】35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法;6B:分式的加减法.【专题】11:计算题.【分析】A、原式合并同类项得到结果,即可做出判断;B、原式通分并利用同分母分式的加法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=4ab,故A选项错误;B、原式=,故B选项错误;C、原式=a4,故C选项正确;D、原式=a6b3,故D选项错误.故选:C.【点评】此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.5.(3分)已知⊙O1和⊙O2的半径分别为2cm和3cm,若O1O2=7cm,则⊙O1和⊙O2的位置关系是()A.外离 B.外切 C.内切 D.相交【考点】MJ:圆与圆的位置关系.【分析】由⊙O1与⊙O2的半径分别为3cm、2cm,且圆心距O1O2=7cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【解答】解:∵⊙O1与⊙O2的半径分别为3cm、2cm,且圆心距O1O2=7cm,又∵3+2<7,∴两圆的位置关系是外离.故选:A.【点评】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.6.(3分)计算,结果是()A.x﹣2 B.x+2 C. D.【考点】53:因式分解﹣提公因式法;66:约分.【专题】11:计算题;44:因式分解.【分析】首先利用平方差公式分解分子,再约去分子分母中得公因式.【解答】解:==x+2,故选:B.【点评】此题主要考查了约分,关键是正确把分子分解因式.7.(3分)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是()A.中位数是8 B.众数是9 C.平均数是8 D.极差是7【考点】W2:加权平均数;W4:中位数;W5:众数;W6:极差.【专题】11:计算题.【分析】由题意可知:总数个数是偶数的,按从小到大的顺序,取中间两个数的平均数为中位数,则中位数为8.5;一组数据中,出现次数最多的数就叫这组数据的众数,则这组数据的众数为9;这组数据的平均数=(7+10+9+8+7+9+9+8)÷8=8.375;一组数据中最大数据与最小数据的差为极差,据此求出极差为3.【解答】解:A、按从小到大排列为:7,7,8,8,9,9,9,10,中位数是:(8+9)÷2=8.5,故A选项错误;B、9出现了3次,次数最多,所以众数是9,故B选项正确;C、平均数=(7+10+9+8+7+9+9+8)÷8=8.375,故C选项错误;D、极差是:10﹣7=3,故D选项错误.故选:B.【点评】考查了中位数、众数、平均数与极差的概念,是基础题,熟记定义是解决本题的关键.8.(3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A. B.2 C. D.2【考点】KM:等边三角形的判定与性质;KU:勾股定理的应用;LE:正方形的性质.【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【解答】解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC===,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.9.(3分)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<0【考点】F4:正比例函数的图象;F8:一次函数图象上点的坐标特征.【分析】根据k<0,正比例函数的函数值y随x的增大而减小解答.【解答】解:∵直线y=kx的k<0,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>0.故选:C.【点评】本题考查了正比例函数图象上点的坐标特征,主要利用了正比例函数的增减性.10.(3分)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个【考点】KD:全等三角形的判定与性质;LE:正方形的性质;S9:相似三角形的判定与性质.【专题】16:压轴题.【分析】由四边形ABCD和四边形CEFG是正方形,根据正方形的性质,即可得BC=DC,CG=CE,∠BCD=∠ECG=90°,则可根据SAS证得①△BCG≌△DCE;然后延长BG交DE于点H,根据全等三角形的对应角相等,求得∠CDE+∠DGH=90°,则可得②BH⊥DE.由△DGF与△DCE相似即可判定③错误,由△GOD与△FOE相似即可求得④.【解答】证明:①∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,在△BCG和△DCE中,,∴△BCG≌△DCE(SAS),故①正确;②延长BG交DE于点H,∵△BCG≌△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE;∴BG⊥DE.故②正确;③∵四边形GCEF是正方形,∴GF∥CE,∴=,∴=是错误的.故③错误;④∵DC∥EF,∴∠GDO=∠OEF,∵∠GOD=∠FOE,∴△OGD∽△OFE,∴=()2=()2=,∴(a﹣b)2•S△EFO=b2•S△DGO.故④正确;故选:B.【点评】此题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定和性质,直角三角形的判定和性质.二、填空题(共6小题,每小题3分,满分18分)11.(3分)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140°.【考点】K8:三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.12.(3分)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.【考点】KF:角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得PE=PD.【解答】解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=10.故答案为:10.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.13.(3分)代数式有意义时,x应满足的条件为x≠±1.【考点】62:分式有意义的条件.【分析】根据分式有意义,分母等于0列出方程求解即可.【解答】解:由题意得,|x|﹣1≠0,解得x≠±1.故答案为:x≠±1.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)【考点】MP:圆锥的计算;U3:由三视图判断几何体.【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:5,∴根据圆锥的侧面积公式:πrl=π×3×5=15π,底面圆的面积为:πr2=9π,∴该几何体的表面积为24π.故答案为:24π.【点评】此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.15.(3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题(填“真”或“假”).【考点】O1:命题与定理.【分析】交换原命题的题设和结论即可得到该命题的逆命题.【解答】解:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的面积相等,那么这两个三角形全等;假.【点评】本题考查逆命题的概念,以及判断真假命题的能力以及全等三角形的判定和性质.16.(3分)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.【考点】AB:根与系数的关系;H7:二次函数的最值.【专题】16:压轴题;45:判别式法.【分析】由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.【解答】解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m+﹣)+2=3(m﹣)2+;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.【点评】本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.三、解答题(共9小题,满分102分)17.(9分)解不等式:5x﹣2≤3x,并在数轴上表示解集.【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【分析】移项,合并同类项,系数化成1即可.【解答】解:5x﹣2≤3x,移项,得5x﹣3x≤2,合并同类项,得2x≤2,系数化成1,x≤1,在数轴上表示为:.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.18.(9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.【考点】KB:全等三角形的判定;L5:平行四边形的性质.【专题】14:证明题.【分析】根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF即可.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是根据平行四边形的性质得出AO=CO.19.(10分)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.【考点】21:平方根;4J:整式的混合运算—化简求值.【专题】11:计算题.【分析】(1)先算乘法,再合并同类项即可;(2)求出x+1的值,再整体代入求出即可.【解答】解:(1)A=(x+2)2+(1﹣x)(2+x)﹣3=x2+4x+4+2+x﹣2x﹣x2﹣3=3x+3;(2)∵(x+1)2=6,∴x+1=±,∴A=3x+3=3(x+1)=±3.∴A=±3.【点评】本题考查了整式的混合运算和求值的应用,主要考查学生的化简和计算能力,题目比较好.20.(10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远90.18三级蛙跳12a一分钟跳绳80.16投掷实心球b0.32推铅球50.10合计501(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.【考点】!6:简单的枚举法;VB:扇形统计图;X7:游戏公平性.【专题】27:图表型.【分析】(1)根据表格求出a与b的值即可;(2)根据表示做出扇形统计图,求出“一分钟跳绳”对应扇形的圆心角的度数即可;(3)列表得出所有等可能的情况数,找出抽取的两名学生中至多有一名女生的情况,即可求出所求概率.【解答】解:(1)根据题意得:a=1﹣(0.18+0.16+0.32+0.10)=0.24;b=×0.32=16;(2)作出扇形统计图,如图所示:根据题意得:360°×0.16=57.6°;(3)男生编号为A、B、C,女生编号为D、E,由枚举法可得:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10种,其中DE为女女组合,∴抽取的两名学生中至多有一名女生的概率为:.【点评】此题考查了游戏公平性,扇形统计图,列表法与树状图法,弄清题意是解本题的关键.21.(12分)已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先把x=2代入反比例函数解析式得到y=﹣k,则A点坐标表示为(2,﹣k),再把A(2,﹣k)代入y=kx﹣6可计算出k,从而得到A点坐标;(2)由(1)得到一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣,根据反比例函数与一次函数的交点问题,解方程组即可得到B点坐标.【解答】解:(1)把x=2代入y=﹣,得:y=﹣k,把A(2,﹣k)代入y=kx﹣6,得:2k﹣6=﹣k,解得k=2,所以一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣,则A点坐标为(2,﹣2);(2)B点在第四象限.理由如下:一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣,解方程组,得:或,所以B点坐标为(1,﹣4),所以B点在第四象限.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.22.(12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【考点】B7:分式方程的应用.【专题】127:行程问题.【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可;【解答】解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.(12分)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.【考点】KU:勾股定理的应用;N3:作图—复杂作图;SA:相似三角形的应用.【专题】13:作图题;14:证明题.【分析】(1)先作出AC的中垂线,再画圆.(2)边接AE,AE是BC的中垂线,∠DAE=∠CAE,得出=;(3)利用△BDE∽△BCA求出BD,再利用余弦求出BM,用勾股定理求出DM.【解答】解:(1)如图(2)如图,连接AE,∵AC为直径,∴∠AEC=90°,∵AB=AC,∴∠DAE=∠CAE,∴=;(3)如图,连接AE,DE,作DM⊥BC交BC于点M,∵AC为直径,∴∠AEC=90°,∵AB=AC=4,cosC=.∴EC=BE=4,∴BC=8,∵点A、D、E、C共圆∴∠ADE+∠C=180°,又∵∠ADE+∠BDE=180°,∴∠BDE=∠C,∴△BDE∽△BCA,∴=,即BD•BA=BE•BC∴BD×4=4×8∴BD=,∵∠B=∠C∴cos∠C=cos∠B=,∴=,∴BM=,∴DM===.【点评】本题主要考查了复杂的作图,相似三角形以及勾股定理的应用,解题的关键是运用△BDE∽△BCA求出线段的长.24.(14分)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16:压轴题;41:待定系数法.【分析】(1)待定系数法求解析式即可,求得解析式后转换成顶点式即可.(2)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<m<0,或3<m<4.(3)左右平移时,使A′D+DB″最短即可,那么作出点C′关于x轴对称点的坐标为C″,得到直线P″C″的解析式,然后把A点的坐标代入即可.【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)过点A,B,∴,解得:,∴抛物线的解析式为:y=x2﹣x﹣2;∵y=x2﹣x﹣2=(x﹣)2﹣,∴C(,﹣).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能使∠APB为钝角,∴M(,0),⊙M的半径=.∵P′是抛物线与y轴的交点,∴OP′=2,∴MP′==,∴P′在⊙M上,∴P′的对称点(3,﹣2),∴当﹣1<m<0或3<m<4时,∠APB为钝角.(3)方法一:存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,﹣2),又∵C(,﹣)∴C'(﹣t,﹣),P'(3﹣t,﹣2),∵AB=5,∴P″(﹣2﹣t,﹣2),要使AC′+BP′最短,只要AC′+AP″最短即可,点C′关于x轴的对称点C″(﹣t,),设直线P″C″的解析式为:y=kx+b,,解得∴直线y=x+t+,当P″、A、C″在一条直线上时,周长最小,∴﹣+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.方法二:∵AB、P′C′是定值,∴A、B、P′、C′所构成的四边形的周长最短,只需AC′+BP′最小,①若抛物线向左平移,设平移t个单位,∴C′(﹣t,﹣),P″(﹣2﹣t,﹣2),∵四边形P″ABP′为平行四边形,∴AP″=BP′,AC′+BP′最短,即AC′+AP″最短,C′关于x轴的对称点为C″(﹣t,),C″,A,P″三点共线时,AC′+AP″最短,KAC′=KAP″,,∴t=.②若抛物线向右平移,同理可得t=﹣,∴将抛物线向左平移个单位时,A、B、P′、C′所构成的多边形周长最短.【点评】本题考查了待定系数法求解析式,顶点坐标,二次函数的对称性,以及距离之和最小的问题,涉及考点较多,有一定的难度.25.(14分)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.【考点】LO:四边形综合题.【专题】152:几何综合题;16:压轴题.【分析】(1)利用梯形中位线的性质,证明△BCF是等边三角形;然后解直角三角形求出x的值;(2)利用相似三角形(或射影定理)求出线段EG与BE的比,然后利用=求解;(3)依题意作出图形,当△BFE的外接圆与AD相切时,线段BE的中点O成为圆心.作辅助线,如答图3,构造一对相似三角形△OMP∽△ADH,利用比例关系列方程求出x的值,进而求出的值.【解答】解:(1)当点F落在梯形ABCD中位线上时,如答图1,过点F作出梯形中位线MN,分别交AD、BC于点M、N.由题意,可知ABCD为直角梯形,则MN⊥BC,且BN=CN=BC.由轴对称性质,可知BF=BC,∴BN=BF,∴∠BFN=30°,∴∠FBC=60°,∴△BFC为等边三角形.∴CF=BC=4,∠FCB=60°,∴∠ECF=30°.设BE、CF交于点G,由轴对称性质可知CG=CF=2,CF⊥BE.在Rt△CEG中,x=CE===.∴当点F落在梯形ABCD的中位线上时,x的值为.(2)如答图2,由轴对称性质,可知BE⊥CF.∵∠GEC+∠ECG=90°,∠GEC+∠CBE=90°,∴∠GCE=∠CBE,又∵∠CGE=∠ECB=90°,∴Rt△BCE∽Rt△CGE,∴,∴CE2=EG•BE①同理可得:BC2=BG•BE②①÷②得:==.∴====.∴=(0<x≤5).(3)当△BFE的外接圆与AD相切时,依题意画出图形,如答图3所示.设圆心为O,半径为r,则r=BE=.设切点为P,连接OP,则OP⊥AD,OP=r=.过点O作梯形中位线MN,分别交AD、BC于点M、N,则OM为梯形ABED的中位线,∴OM=(AB+DE)=(3+5﹣x)=(8﹣x).过点A作AH⊥CD于点H,则四边形ABCH为矩形,∴AH=BC=4,CH=AB=3,∴DH=CD﹣CH=2.在Rt△ADH中,由勾股定理得:AD===2.∵MN∥CD,∴∠ADH=∠OMP,又∵∠AHD=∠OPM=90°,∴△OMP∽△ADH,∴,即,化简得:16﹣2x=,两边平方后,整理得:x2+64x﹣176=0,解得:x1=﹣32+20,x2=﹣32﹣20(舍去)∵0<﹣32+20<5∴x=﹣32+20符合题意,∴==139﹣80.【点评】本题是几何综合题,考查了直角梯形、相似、勾股定理、等边三角形、矩形、中位线、圆的切线、解方程、解直角三角形等知识点,考查了轴对称变换与动点型问题,涉及考点较多,有一定的难度.

2015年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2015•广州)四个数﹣3.14,0,1,2中为负数的是()A.﹣3.14B.0C.1D.22.(3分)(2015•广州)将图中所示的图案以圆心为中心,旋转180°后得到的图案是()A.B.C.D.3.(3分)(2015•广州)已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.2.5B.3C.5D.104.(3分)(2015•广州)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对5.(3分)(2015•广州)下列计算正确的是()A.ab•ab=2abB.(2a)3=2a3C.3﹣=3(a≥0)D.•=(a≥0,b≥0)6.(3分)(2015•广州)如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C.D.7.(3分)(2015•广州)已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.28.(3分)(2015•广州)下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个9.(3分)(2015•广州)已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.3610.(3分)(2015•广州)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10B.14C.10或14D.8或10二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)(2015•广州)如图,AB∥CD,直线l分别与AB,CD相交,若∠1=50°,则∠2的度数为.12.(3分)(2015•广州)根据环保局公布的广州市2013年至2014年PM2.5的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是.(填主要来源的名称)13.(3分)(2015•广州)分解因式:2mx﹣6my=.14.(3分)(2015•广州)某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为.15.(3分)(2015•广州)如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=.16.(3分)(2015•广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(9分)(2015•广州)解方程:5x=3(x﹣4)18.(9分)(2015•广州)如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.19.(10分)(2015•广州)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.20.(10分)(2015•广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.21.(12分)(2015•广州)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.22.(12分)(2015•广州)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?23.(12分)(2015•广州)如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.24.(14分)(2015•广州)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.25.(14分)(2015•广州)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.第1页(共1页)2015年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2015•广州)四个数﹣3.14,0,1,2中为负数的是()A.﹣3.14B.0C.1D.2考点:正数和负数.菁优网版权所有分析:根据负数是小于0的数,可得答案.解答:解:四个数﹣3.14,0,1,2中为负数的是﹣3.14,故选:A.点评:本题考查了正数和负数,解决本题的关键是小于0的数是负数.2.(3分)(2015•广州)将图中所示的图案以圆心为中心,旋转180°后得到的图案是()A.B.C.D.考点:生活中的旋转现象.菁优网版权所有分析:根据旋转的性质,旋转前后图形不发生任何变化,绕中心旋转180°,即是对应点绕旋转中心旋转180°,即可得出所要图形.解答:解:将图中所示的图案以圆心为中心,旋转180°后得到的图案是.故选:D.点评:此题主要考查了旋转中,中心旋转180°后图形的性质,此题应注意图形的旋转变换.3.(3分)(2015•广州)已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.2.5B.3C.5D.10考点:切线的性质.菁优网版权所有分析:根据直线与圆的位置关系可直接得到点O到直线l的距离是5.解答:解:∵直线l与半径为r的⊙O相切,∴点O到直线l的距离等于圆的半径,即点O到直线l的距离为5.故选C.点评:本题考查了切线的性质以及直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;当直线l和⊙O相离⇔d>r.4.(3分)(2015•广州)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对考点:统计量的选择.菁优网版权所有分析:根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.解答:解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.点评:本题考查方差的意义以及对其他统计量的意义的理解.它是反映一组数据波动大小,方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.5.(3分)(2015•广州)下列计算正确的是()A.ab•ab=2abB.(2a)3=2a3C.3﹣=3(a≥0)D.•=(a≥0,b≥0)考点:二次根式的加减法;幂的乘方与积的乘方;单项式乘单项式;二次根式的乘除法.菁优网版权所有分析:分别利用积的乘方以及二次根式的乘法运算法则化简求出即可.解答:解:A、ab•ab=a2b2,故此选项错误;B、(2a)3=8a3,故此选项错误;C、3﹣=2(a≥0),故此选项错误;D、•=(a≥0,b≥0),正确.故选:D.点评:此题主要考查了二次根式的加减运算以及积的乘方运算等知识,正确掌握相关性质是解题关键.6.(3分)(2015•广州)如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C.D.考点:由三视图判断几何体;几何体的展开图.菁优网版权所有分析:由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱,再根据圆柱展开图的特点即可求解.解答:解:∵主视图和左视图是长方形,∴该几何体是柱体,∵俯视图是圆,∴该几何体是圆柱,∴该几何体的展开图可以是.故选:A.点评:此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个试图确定其具体形状.同时考查了几何体的展开图.7.(3分)(2015•广州)已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.2考点:解二元一次方程组.菁优网版权所有专题:计算题.分析:求出方程组的解得到a与b的值,即可确定出a+b的值.解答:解:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则a+b=4,故选B.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(3分)(2015•广州)下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个考点:命题与定理;平行四边形的判定.菁优网版权所有分析:分别利用平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形,进而得出即可.解答:解:①对角线互相平分的四边形是平行四边形,正确,符合题意;②两组对角分别相等的四边形是平行四边形,正确,符合题意;③一组对边平行,另一组对边相等的四边形是平行四边形,说法错误,例如等腰梯形,也符合一组对边平行,另一组对边相等.故选:B.点评:此题主要考查了命题与定理,正确把握相关定理是解题关键.9.(3分)(2015•广州)已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.36考点:正多边形和圆.菁优网版权所有分析:解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.解答:解:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,高为3,因而等边三角形的面积是3,∴正六边形的面积=18,故选C.点评:本题考查了正多边形和圆,正六边形被它的半径分成六个全等的等边三角形,这是需要熟记的内容.10.(3分)(2015•广州)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10B.14C.10或14D.8或10考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.菁优网版权所有分析:先将x=2代入x2﹣2mx+3m=0,求出m=4,则方程即为x2﹣8x+12=0,利用因式分解法求出方程的根x1=2,x2=6,分两种情况:①当6是腰时,2是等边;②当6是底边时,2是腰进行讨论.注意两种情况都要用三角形三边关系定理进行检验.解答:解:∵2是关于x的方程x2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=6.①当6是腰时,2是等边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.故选B.点评:此题主要考查了一元二次方程的解,解一元二次方程﹣因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验.二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)(2015•广州)如图,AB∥CD,直线l分别与AB,CD相交,若∠1=50°,则∠2的度数为50°.考点:平行线的性质.菁优网版权所有分析:根据平行线的性质得出∠1=∠2,代入求出即可.解答:解:∵AB∥CD,∴∠1=∠2,∵∠1=50°,∴∠2=50°,故答案为:50°.点评:本题考查了平行线的性质的应用,能求出∠1=∠2是解此题的关键,注意:两直线平行,内错角相等.12.(3分)(2015•广州)根据环保局公布的广州市2013年至2014年PM2.5的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是机动车尾气.(填主要来源的名称)考点:扇形统计图.菁优网版权所有分析:根据扇形统计图即可直接作出解答.解答:解:所占百分比最大的主要来源是:机动车尾气.故答案是:机动车尾气.点评:本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.13.(3分)(2015•广州)分解因式:2mx﹣6my=2m(x﹣3y).考点:-因式分解-提公因式法.菁优网版权所有专题:-计算题.分析:-原式提取公因式即可得到结果.解答:-解:原式=2m(x﹣3y).故答案为:2m(x﹣3y).点评:-此题考查了因式分解﹣提公因式法,熟练掌握因式分解的方法是解本题的关键.14.(3分)(2015•广州)某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为y=6+0.3x.考点:根据实际问题列一次函数关系式.菁优网版权所有分析:根据高度等于速度乘以时间列出关系式解答即可.解答:解:根据题意可得:y=6+0.3x(0≤x≤5),故答案为:y=6+0.3x.点评:此题考查函数关系式,关键是根据题中水位以每小时0.3米的速度匀速上升列出关系式.15.(3分)(2015•广州)如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=.考点:线段垂直平分线的性质;解直角三角形.菁优网版权所有分析:根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cosC.解答:解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.点评:本题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.16.(3分)(2015•广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为3.考点:-三角形中位线定理;勾股定理.菁优网版权所有专题:-动点型.分析:-根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.解答:-解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.点评:-本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(9分)(2015•广州)解方程:5x=3(x﹣4)考点:-解一元一次方程.菁优网版权所有专题:-计算题.分析:-方程去括号,移项合并,把x系数化为1,即可求出解.解答:-解:方程去括号得:5x=3x﹣12,移项合并得:2x=﹣12,解得:x=﹣6.点评:-此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.(9分)(2015•广州)如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.考点:-全等三角形的判定与性质;正方形的性质.菁优网版权所有专题:-证明题.分析:-根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等证明即可.解答:-证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴BE=AF.点评:-本题考查了正方形的性质,全等三角形的判定与性质,以及垂直的定义,求出两三角形全等,从而得到BE=AF是解题的关键.19.(10分)(2015•广州)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.考点:-分式的化简求值;一元一次不等式组的整数解.菁优网版权所有分析:-(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.解答:-解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.点评:-(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.20.(10分)(2015•广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.考点:-反比例函数的性质;反比例函数的图象;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.菁优网版权所有分析:-(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为3.设A(x、),则利用三角形的面积公式得到关于m的方程,借助于方程来求m的值.解答:-解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.点评:-本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.21.(12分)(2015•广州)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.考点:-一元二次方程的应用.菁优网版权所有专题:-增长率问题.分析:-(1)一般用增长后的量=增长前的量×(1+增长率),2014年要投入教育经费是2500(1+x)万元,在2014年的基础上再增长x,就是2015年的教育经费数额,即可列出方程求解.(2)利用(1)中求得的增长率来求2016年该地区将投入教育经费.解答:-解:设增长率为x,根据题意2014年为2500(1+x)万元,2015年为2500(1+x)(1+x)万元.则2500(1+x)(1+x)=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费3327.5万元.点评:-本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.22.(12分)(2015•广州)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?考点:-利用频率估计概率;概率公式;列表法与树状图法.菁优网版权所有分析:-(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值;解答:-解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=;(2)这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率=×=;(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴=0.95,解得:x=16.点评:-本题考查了概率的公式、列表法与树状图法及用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.23.(12分)(2015•广州)如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.考点:-作图—复杂作图;圆周角定理.菁优网版权所有分析:-(1)①以点B为圆心,以任意长为半径画弧,两弧交角ABC两边于点M,N;②分别以点M,N为圆心,以大于MN的长度为半径画弧,两弧交于一点;③作射线BE交AC与E,交⊙O于点D,则线段BD为△ABC的角平分线;(2)连接OD,设⊙O的半径为r,证得△ABE∽△DCE,在Rt△ACB中,∠ABC=90°,∠ACB=30°,得到AB=AC=r,推出△ADC是等腰直角三角形,在Rt△ODC中,求得DC==r,于是问题可得.解答:-(1)如图所示;(2)如图2,连接OD,设⊙O的半径为r,∵∠BAE=∠CDE,∠AEB=∠DEC,∴△ABE∽△DCE,在Rt△ACB中,∠ABC=90°,∠ACB=30°,∴AB=AC=r,∵∠ABD=∠ACD=45°,∵OD=OC,∴∠ABD=∠ACD=45°,∴∠DOC=90°,在Rt△ODC中,DC==r,∴===.点评:-本题主要考查基本作图,圆周角定理,勾股定理,作一个角的平分线,牢记一些基本作图是解答本题的关键.24.(14分)(2015•广州)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.考点:-四边形综合题.菁优网版权所有分析:-(1)证明△OMP≌△ONP,即可证得MN⊥OT,且OT平分MN;(2)①若经过A,B,C,D四个点的圆存在,则圆心一定是AC和BD的中垂线的交点,即AC和BD互相平分,据此即可判断;②已知FM⊥AB,作EG⊥AB于G,根据菱形的面积公式求得GE的长,然后根据△BNE∽△BFD求得BF的长,再根据△BEG∽△BFM求得FM的长.解答:-解:(1)MN⊥OT,且OT平分MN.理由是:连接MN、OT相交于点P.在△OMT和△ONT中,,∴△OMT≌△ONT,∴∠MOT=∠NPT,∴在△OMP和△ONP中,,∴△OMP≌△ONP,∴MP=NP,∠OPM=∠OPN=90°,即MN⊥OT;(2)①经过A,B,C,D四个点的圆不一定存在,理由是:若经过A,B,C,D四个点的圆存在,则圆心一定是AC和BD的中垂线的交点,根据(1)可得AC垂直平分BD,而垂足不一定是AC的中点;②作FM⊥AB,作EG⊥AB于G.∵四边形ABED是菱形,∴AE⊥BD,且BN=BD=4,∴AN=NE===3,AE=6.∴S菱形ABED=AE•BD=×6×8=24,又∵S菱形ABED=AB•EG,∴EG=.∵∠DBF=∠DBF,∠BNE=∠BFD,∴△BNE∽△BFD,∴,即,∴BF=.∵GE⊥AB,FM⊥AB,∴GE∥FM,∴△BEG∽△BFM,∴,即,解得:FM=.点评:-本题考查了菱形的判定与性质,以及相似三角形的判定与性质,正确作出辅助线是关键,在初中范围内求线段长的基本方法是解直角三角形和利用三角形相似求解.25.(14分)(2015•广州)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.考点:-二次函数综合题.菁优网版权所有分析:-(1)利用y轴上点的坐标性质表示出C点坐标,再利用O,C两点间的距离为3求出即可;(2)分别利用①若C(0,3),即c=3,以及②若C(0,﹣3),即c=﹣3,得出A,B点坐标,进而求出函数解析式,进而得出答案;(3)利用①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,得出y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,进而求出平移后的直线与P有公共点时得出n的取值范围,②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,进而求出平移后的直线与P有公共点时得出n的取值范围,进而利用配方法求出函数最值.解答:-解:(1)令x=0,则y=c,故C(0,c),∵OC的距离为3,∴|c|=3,即c=±3,∴C(0,3)或(0,﹣3);(2)∵x1x2<0,∴x1,x2异号,①若C(0,3),即c=3,把C(0,3)代入y2=﹣3x+t,则0+t=3,即t=3,∴y2=﹣3x+3,把A(x1,0)代入y2=﹣3x+3,则﹣3x1+3=0,即x1=1,∴A(1,0),∵x1,x2异号,x1=1>0,∴x2<0,∵|x1|+|x2|=4,∴1﹣x2=4,解得:x2=﹣3,则B(﹣3,0),代入y1=ax2+bx+3得,,解得:,∴y1=﹣x2﹣2x+3=﹣(x+1)2+4,则当x≤﹣1时,y随x增大而增大.②若C(0,﹣3),即c=﹣3,把C(0,﹣3)代入y2=﹣3x+t,则0+t=﹣3,即t=﹣3,∴y2=﹣3x﹣3,把A(x1,0),代入y2=﹣3x﹣3,则﹣3x1﹣3=0,即x1=﹣1,∴A(﹣1,0),∵x1,x2异号,x1=﹣1<0,∴x2>0∵|x1|+|x2|=4,∴1+x2=4,解得:x2=3,则B(3,0),代入y1=ax2+bx+3得,,解得:,∴y1=x2﹣2x﹣3=(x﹣1)2﹣4,则当x≥1时,y随x增大而增大,综上所述,若c=3,当y随x增大而增大时,x≤﹣1;若c=﹣3,当y随x增大而增大时,x≥1;(3)①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,则当x≤﹣1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x+3﹣n,要使平移后直线与P有公共点,则当x=﹣1﹣n,y3≥y4,即﹣(﹣1﹣n+1+n)2+4≥﹣3(﹣1﹣n)+3﹣n,解得:n≤﹣1,∵n>0,∴n≤﹣1不符合条件,应舍去;②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,则当x≥1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x﹣3﹣n,要使平移后直线与P有公共点,则当x=1﹣n,y3≤y4,即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,解得:n≥1,综上所述:n≥1,2n2﹣5n=2(n﹣)2﹣,∴当n=时,2n2﹣5n的最小值为:﹣.点评:-此题主要考查了二次函数综合以及二次函数的平移以及二次函数增减性等知识,利用分类讨论得出n的取值范围是解题关键.

2016年广东省广州市中考数学试卷一、选择题.(本大题共10小题,每小题3分,满分30分.)1.(3分)(2016•广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元 B.收入20元 C.支出80元 D.收入80元2.(3分)(2016•广州)如图所示的几何体左视图是()A. B. C. D.3.(3分)(2016•广州)据统计,2015年广州地铁日均客运量均为6590000人次,将6590000用科学记数法表示为()A.6.59×104 B.659×104 C.65.9×105 D.6.59×1064.(3分)(2016•广州)某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A. B. C. D.5.(3分)(2016•广州)下列计算正确的是()A. B.xy2÷C.2 D.(xy3)2=x2y66.(3分)(2016•广州)一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v= C.v=20t D.v=7.(3分)(2016•广州)如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A.3 B.4 C.4.8 D.58.(3分)(2016•广州)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A.ab>0 B.a﹣b>0 C.a2+b>0 D.a+b>09.(3分)(2016•广州)对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大 B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7) D.图象与x轴有两个交点10.(3分)(2016•广州)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关二.填空题.(本大题共六小题,每小题3分,满分18分.)11.(3分)(2016•广州)分解因式:2a2+ab=.12.(3分)(2016•广州)代数式有意义时,实数x的取值范围是.13.(3分)(2016•广州)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为cm.14.(3分)(2016•广州)分式方程的解是.15.(3分)(2016•广州)如图,以点O为圆心的两个同心

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论