八年级数学下册:第二十章 数据的分析教案_第1页
八年级数学下册:第二十章 数据的分析教案_第2页
八年级数学下册:第二十章 数据的分析教案_第3页
八年级数学下册:第二十章 数据的分析教案_第4页
八年级数学下册:第二十章 数据的分析教案_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二十章数据的分析

20.1数据的集中趋势

20.1.1平均数

第1课时平均数(1)

教学目标<

1.使学生理解并掌握数据的权和加权平均数的概念.

2.使学生掌握加权平均数的计算方法.

重启难后<

重点

会求加权平均数.

难点

对“权”的理解.

教学设计<

一、复习导入

某校八年级共有4个班,在一次数学考试中参考人数和成绩如下:

班级1班2班3班4班

参考人数40424532

平均成绩80818279

求该校八年级学生在这次数学考试中的平均成绩.下述计算方法是否合理?为什么?

x=;X(79+80+81+82)=80.5

平均数的概念及计算公式:

一般地,如果有n个数X”刈,X3,…,X",则有*=型+.七咨+…+之,其中x叫做这

n个数的平均数,读作“x拔”.

二、讲授新课

问题:

一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水

平测试,他们的各项成绩(百分制)如表所示.

应试者听说读写

甲85788573

乙73808283

(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分

制).从他们的成绩看,应该录取谁?

(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2:1:3:4

的比确定计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?

对于问题(1),根据平均数公式,甲的平均成绩为:

85+78+85+73

-------;-------=80.25,

乙的平均成绩为

73+80+82+83

-------:-------二79.5.

4

因为甲的平均成绩比乙高,所以应该录取甲.

对于问题(2),听、说、读、写成绩按照2:1:3:4的比确定,这说明各项成绩的“重

要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”.因此,甲的平均成绩为

85X2+78X1+85X3+73X4…「

------------------------------------------------------------二705

2+1+3+4

乙的平均成绩为

73X2+80X1+82X3+83X4

=80.4.

2+1+3+4

因为乙的平均成绩比甲高,所以应该录取乙.

上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问

题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4

分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、

读、写四项成绩的加权平均数.

一般地,若n个数X”X2,…,Xn的权分别是W1,W2,…,w„,则

X1W1+X2W2-I---------

Wi+wz+…+w”

叫做这n个数的加权平均数.

三、例题讲解

【例1】教材第112页例1

【例2】为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行了测量,结果如

下表:(单位:小时)

寿命450550600650700

只数2010301525

求这些灯泡的平均使用寿命.

解:这些灯泡的平均使用寿命为:

450X20+550X10+600X30+650X15+700X25,,…

x=-------------二」…----------------=597.5(小时)

四、巩固练习

1.在一个样本中,2出现了xi次,3出现了X2次,4出现了X3次,5出现了X”次,则这

个样本的平均数为.

2XI+3X2+4X:,+5XS

【答案】

Xi+Xz+Xs+Xi

2.某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环.

ax+by

【答案】

a+b

五、课堂小结

师:这节课你学到了什么新知识?

生1:数据的权和加权平均数的概念.

生2:掌握加权平均数的计算方法.

教竽反思<

平均数是统计中的一个重要概念,新教材注重学生在经历统计活动的过程中体会平均数

的本质内涵,理解平均数的意义,发展学生的统计观念,基于以上认识,我在设计中突出了

让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的

含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.

第2课时平均数(2)

_教_学_目_标_<:«<

1.加深对加权平均数的理解.

2.会根据频数分布表求加权平均数,解决一些实际问题.

3.会用计算器求加权平均数的值.

重总难后<:«<

重点

根籍频数分布表求加权平均数.

难点

根据频数分布表求加权平均数.

教与设计<:«<

一、复习导入

采用教材原有的引入问题,设计的几个问题如下:

(D请同学们阅读教材中的探究问题,依据统计表可以读出哪些信息?

(2)这里的组中值指什么,它是怎样确定的?

(3)第二组数据的频数5指什么呢?

(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系?

设计意图⑴主要是想引出根据频数分布表求加权平均数近似值的计算方法;

(2)加深了对“权”的意义的理解:当利用组中值近似取代一组数据中的平均值时,频数

恰好反映这组数据的轻重程度,即权;

二、例题精讲

【例2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,

14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).

解:这个跳水队运动员的平均年龄为

13X8+14X16+15X24+16X2

214(岁).

8+16+24+2

【例3】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它们的使用

寿命如下表所示,这批灯泡的平均使用寿命是多少?

使用寿

命/x/h600Wx

<1000lOOOWx

<14001400<x

<18001800Wx

<22002200Wx

<2600

灯泡

只数51012176

分析:抽出的50只灯泡的使用寿命组成一个样本,可以利用样本的平均使用寿命来

估计这批灯泡的平均使用寿命.

解:根据表格,可以得出各小组的组中值,于是

800X5+1200X10+1600X12+2000X17+2400X6

x=7T—1672,

50

即样本平均数为1672.

因此,可以估计这批灯泡的平均使用寿命大约是1672h.

三、巩固练习

某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,

下表是该校八年级某班50名学生某一天做数学课外作业所用时间的情况统计表.

所用时间t(分钟)人数

OVtWlO4

10<t^206

20VtW3014

30<t^4013

40ct<509

50VtW604

求:(1)第二组数据的组中值是多少?

(2)该班学生平均每天做数学作业所用的时间.

【答案】解:(1)15

(2)该班学生平均每天做数学作业所用时间为

5X4+15X6+25X14+35X13+45X9+55X4

x==30.8(分钟)

4+6+14+13+9+4

四、课堂小结

1.加权平均数的应用.

2.根据频数分布表求加权平均数.

3.学会用计算器求加权平均数的值.

教学反思

在统计中算术平均数常用于表示对象的一般水平,它是描述数据集中程度的一个统计量,

它可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的

差别,可见平均数是统计中的一个重要概念.

基于这一认识,这节课注重了以下儿个方面:

一、在现实生活情境中引入,注重数学与生活的联系.

二、创造有效的数学学习方式,理解平均数的意义,学会平均数的算法.

20.1.2中位数和众数

第1课时中位数和众数(1)

教学目标<:«<

认识中位数和众数,并会求出一组数据的众数和中位数.

重启难总<:«<

重点

认识中位数、众数这两种数据代表.

难点

利甫中位数、众数分析数据信息,做出决策.

教学设计<:«<

一、复习导入

前面已经和同学们研究了平均数这个数据代表.它在分析数据的过程中担当了重要的角

色,今天我们来共同研究和认识数据代表中的新成员一一中位数和众数,看看它们在分析数

据的过程中又起到怎样的作用.

—:计将辛后:里

〒蓑是某公司员工月收入的资料、

月收

入/元45000180001000055005000340030001000

人数111361111

(1)计算这个公司员工月收入的平均数;

(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?

师:同学们知道如何计算这个公司员工月收入的平均数吗?

生:根据加权平均数,可以求出这个公司员工月收入的平均数为:

45000+18000+10000+5500X3+5000X6+3400+3000X11+1000

1+1+1+3+6+1+11+1=6276

师:很好!那么用第(1)问中算得的平均数来反映该公司全体员工的月收入水平,你认为

合理吗?

生:不合理.因为在这25名员工中,仅有3名员工的收入在6276元以上,而另外22

名员工的收入都在6276元以下.因此,用月收入的平均数反映所有员工的月收入水平不合理.

师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入的水平呢?

这就要用到本节课要学习的中位数,利用中位数可以更好地反映这组数据的集中趋势.

将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称位于

中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为

这组数据的中位数.

利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25名员工月收入数据

由小到大排列,得到的中位数为3400,这说明除去月收入为3400元的员工,一半员工收入

高于3400元,另一半员工收入低于3400元.

【例1]教材第117页例4

师:刚才我们学习中位数,下面我们再来学习一个反映数据集中趋势的另一众数,一组

数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往

往能更好地反映该组数据的集中趋势.

【例2】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你

能根据表中的数据为这家鞋店提供进货建议吗?

尺码/。加2222.52323.52424.525

销售量/双12511731

分析:一般来讲,鞋店比较关心哪种尺码的鞋的销售量最大,也就是关心卖出的鞋的尺

码组成的一组数据的众数.一段时间内卖出的300双女鞋的尺码组成一个样本数据,通过分

析样本数据可以找出样本数据的众数,进而估计这家鞋店销售哪种尺码的鞋最多.

解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5腐的

鞋销售量最大,因此可以建议鞋店多进23.5cm的鞋.

三、巩固练习

1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是,众数是

【答案】99

2.一组各不相同的数据23,27,20,18,x,12,它的中位数是21,则x的值是.

[答案]22

3.数据92,96,98,100,x的众数是96,则其中位数和平均数分别是()

A.97,96B.96,96.4

C.96,97D.98,97

【答案】B

4.如果在一组数据中,23,25,28,22出现的次数依次为3,5,3,1,并且没有其他

的数据,则这组数据的众数和中位数分别是()

A.24,25B.23,24

C.25,25D.23,25

【答案】C

四、课堂小结

1.认识了中位数和众数.

2.理解了中位数和众数的意义和作用,并能利用它们分析数据信息,做出决策.

教与反思

本次教学中,我通过引导学生在了解中位数和众数的意义之后,让学生利用中位数和众

数的知识解决实际问题,沟通了知识与实际生活的联系,让学生体会到中位数与众数知识的

实用性.第2课时中位数和众数(2)

教学目标<:«<

1.进一步认识到平均数、众数、中位数都是数据的代表.

2.了解平均数、中位数、众数在描述数据时的差异.

重总难总<

重点

了解平均数、中位数、众数之间的差异.

难点

灵活运用这三个数据代表解决问题.

教学设计<

一、复习导入

平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据集中趋势的量.它

们各有自己的特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,

选择适当的量反映数据的集中趋势.另外要注意:

(1)平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影

响较大;

(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极

端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;

(3)平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应地引

起平均数的变动;

(4)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出

现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中

位数描述其趋势;

(5)实际问题中求得的平均数、众数、中位数应带上单位.

二、例题讲解

【例1】在一次环保知识竞赛中,某班50名学生成绩如下表所示:

得分5060708090100110120

人数2361415541

分别求出这些学生成绩的众数、中位数和平均数.

解:众数90分中位数85分平均数84.6分

【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)

甲群:13,13,14,15,15,15,16,17,17.

乙群:3,4,5,5,6,6,36,55.

(1)甲群游客的平均年龄是岁,中位数是一岁,众数是一岁,其中

能较好地反映甲群游客年龄特征的是;

(2)乙群游客的平均年龄是岁,中位数是岁,众数是岁,其中

能较好地反映乙群游客年龄特征的是.

解:(1)151515众数⑵155.55,6中位数

【例3】教材第119页例6

三、巩固练习

某公司的33名职工的月工资(以元为单位)如下:

职员董事长副董

事长董事总经理经理管理员职员

人数11215320

工资5500500035003000250020001500

(1)求该公司职工月工资的平均数、中位数、众数:

(2)假设副董事长的工资从5000元提升到20000元,堇事长的工资从5500元提升到30000

元,那么新的平均数、中位数、众数又是多少?(精确到元)

(3)你认为应该使用平均数和中位数中的哪一个来描述该公司职工的工资水平?

【答案】(1)209115001500(2)328815001500(3)中位数或众数均能反映该公

司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平

均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.

四、课堂小结

1.了解平均数、中位数、众数之间的差异.

2.灵活运用这三个数据代表解决问题.

教与反思:«<

本节课首先从复习平均数、中位数和众数的定义开始,接着列出这三种统计量各自的特

点和适用条件,为避免太过抽象,在后面设计的例题中都有这些统计量的应用,培养学生应

用数学的意识.

20.2数据的波动程度

教学目标<:«<

1.了解方差的定义和计算公式.

2.理解方差概念的产生和形成过程.

3.会用方差比较两组数据的波动大小.

重启难总<:«<

重点

方差产生的必要性和应用方差公式解决实际问题.

难点

理露方差的概念并会运用方差的公式解决实际问题.

敦亨设计<:«<

一、情境导入

1.请同学们看下面的问题:(幻灯片出示)

农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性

是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条

件相同的试验田进行试验,得到各试验田每公顷的产量(单位:/)如下表所示.

甲7.657.507.627.597.657.647.507.407.417.41

乙7.557.567.537.447.497.527.587.467.537.49

根据这些数据估计,农科院应该选择哪种甜玉米种子呢?

上面两组数据的平均数分别是

x甲27.54,x乙%7.52,

说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种

植这两种甜玉米,它们的平均产量相差不大.

为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1

和图2.

・每公顷产员每公顷产量

7.97.9

7.87.8

7.77.7

7.67.6

7.57.5

7.47.4

7.37J

7.272

7.17.1

024681012数据序号b24681012数据序号

图1甲种甜玉米的产量分布图2乙种甜玉米的产量分布

师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米

在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?

这就是我们本节课所要学习的内容——方差.

教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了

解它们的波动大小(即偏离平均数的大小).

2.方差的概念

教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得

各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据

的波动大小,通常,采用的是下面的做法:

设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是1,那么我们用

s2=-[(xi-x)'+(X2-x)"d---1-(x„—x)?]

n

来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明

这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一

个元素的意义,以便学生理解和掌握.

在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,

根据理论说明哪种甜玉米的产量更好.

教师示范:

两组数据的方差分别是

2(7.65-7.54)2+(7.50—7.54)?+…+(7.41-7.54)2

s中2二-----------------------------------------------------七0.01,

22

2(7.55-7.52)2+(7.56—7.52)+-+(7.49-7.52)八人“

s-----------------------------------------------------^0.002.

显然s/As/,即甲种甜玉米的波动较大,这与我们从图1和图2看到的结果一致.

由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的

平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种

甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推

测这个地区比较适合种植乙种甜玉米.

这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习

数学产生浓厚的兴趣,而且培养

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论