版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省江油市五校数学八年级第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列计算:,其中结果正确的个数为()A.1 B.2 C.3 D.42.某市的夏天经常台风,给人们的出行带来很多不便,小明了解到去年8月16日的连续12个小时的风力变化情况,并画出了风力随时间变化的图象(如图),则下列说法正确的是()A.20时风力最小 B.8时风力最小C.在8时至12时,风力最大为7级 D.8时至14时,风力不断增大3.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形4.下列各式从左到右的变形中,是因式分解的为(
)A.x(a-b)=ax-bx B.x2-1=(x-1)(x+1)C.x2-1+y2=(x-1)(x+1)+y2 D.ax+bx+c=x(a+b)+c5.下列式子:,,,,其中分式的数量有()A.1个 B.2个 C.3个 D.4个6.如图,在平面直角坐标系中,菱形ABCD的顶点A、B的坐标分别为(3,0)、(-2,0),点D在y轴正半轴上,则点C的坐标为()A.(-3,4). B.(-4,3). C.(-5,3). D.(-5,4).7.如图,已知一组平行线a//b//c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=2,BC=3,DE=l.6,则EF=()A.2.4 B.1.8 C.2.6 D.2.88.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为()A.0 B.1 C.2 D.49.以下说法正确的是()A.在367人中至少有两个人的生日相同;B.一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖;C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件;D.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是10.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3) B.(﹣4,3) C.(0,﹣3) D.(0,3)二、填空题(每小题3分,共24分)11.若一个三角形的三边的比为3:4:5,则这个三角形的三边上的高之比为__________.12.如图,在□ABCD中,AB=5,AD=6,将□ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为____.13.小数0.00002l用科学记数法表示为_____.14.某种分子的半径大约是0.0000108mm,用科学记数法表示为______________.15.如图,已知二次函数y=ax2+bx+c的图象经过点A(3,0),对称轴为直线x=1,则点B的坐标是_____.16.函数的自变量x的取值范围是.17.某一次函数的图象经过点(1,),且函数y的值随自变量x的增大而减小,请写出一个满足上述条件的函数关系式:______________.18.关于x的方程有两个实数根,则符合条件的一组的实数值可以是b=______,c=______.三、解答题(共66分)19.(10分)如图,矩形ABCD中,AB=6cm,BC=8cm,E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,运动时间为t(0≤t≤5)秒.(1)若G、H分别是AB、DC的中点,且t≠2.5s,求证:以E、G、F、H为顶点的四边形始终是平行四边形;(2)在(1)的条件下,当t为何值时?以E、G、F、H为顶点的四边形是矩形;(3)若G、H分别是折线A-B-C,C-D-A上的动点,分别从A、C开始,与E.F相同的速度同时出发,当t为何值时,以E、G、F、H为顶点的四边形是菱形,请直接写出t的值.20.(6分)一个容器盛满纯药液,第一次倒出一部分纯药液后,用水加满;第二次又倒出同样多的药液,若此时容器内剩下的纯药液是,则每次倒出的液体是多少?21.(6分)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了解学生对四大名著的阅读情况,就“四大古典名著”你读完了几部的问题在全校900名学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题(1)本次调查被调查的学生__________名,学生阅读名著数量(部)的众数是__________,中位数是__________;(2)扇形统计图中“1部”所在扇形的圆心角为__________度;(3)请将条形统计图补充完整;(4)试估算全校大约有多少学生读完了3部以上(含3部)名著.22.(8分)如图,直线l1:y=x-4分别与x轴,y轴交于A,B两点,与直线l2交于点C(-2,m).点D是直线l2与y轴的交点,将点A向上平移3个单位,再向左平移8个单位恰好能与点D重合.
(1)求直线l2的解析式;
(2)已知点E(n,-2)是直线l1上一点,将直线l2沿x轴向右平移.在平移过程中,当直线l2与线段BE有交点时,求平移距离d的取值范围.23.(8分)已知一次函数的图象经过点(3,4)与(-3,-8).(1)求这个一次函数的解析式;(2)求关于的不等式的解集.24.(8分)感知:如图①,在正方形中,点在对角线上(不与点、重合),连结、,过点作,交边于点.易知,进而证出.探究:如图②,点在射线上(不与点、重合),连结、,过点作,交的延长线于点.求证:.应用:如图②,若,,则四边形的面积为________.25.(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,建立平面直角坐标系xOy,ABC的三个顶点的坐标分别为A(2,4),B(1,1),C(4,2).(1)平移ABC,使得点A的对应点为A1(2,﹣1),点B,C的对应点分别为B1,C1,画出平移后的A1B1C1;(2)在(1)的基础上,画出A1B1C1绕原点O顺时针旋转90°得到的A2B2C2,其中点A1,B1,C1的对应点分别为A2,B2,C2,并直接写出点C2的坐标.26.(10分)作一直线,将下图分成面积相等的两部分(保留作图痕迹).
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
根据二次根式的运算法则即可进行判断.【题目详解】,正确;正确;正确;,正确,故选D.【题目点拨】此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:;.2、A【解题分析】
根据函数图象可以判断各个选项中的结论是否正确,本题得以解决.【题目详解】解:由图象可得,20时风力最小,故选项A正确,选项B错误,在8时至12时,风力最大为4级,故选项C错误,8时至11时,风力不断增大,11至12时,风力在不断减小,在12至14时,风力不断增大,故选项D错误,故选:A.【题目点拨】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.3、A【解题分析】
已知AC和BD是对角线,取各自中点,则对角线互相平分(即AO=CO,BO=DO)的四边形是平行四边形.【题目详解】解:由已知可得AO=CO,BO=DO,所以四边形ABCD是平行四边形,依据是对角线互相平分的四边形是平行四边形.故选:A.【题目点拨】本题主要考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.4、B【解题分析】
根据因式分解的的定义即可完成本题。【题目详解】解:A选项没有写成因式积的形式,故A错;B选项写成因式积的形式,故B正确;C选项没有写成因式积的形式,故C错;D选项没有写成因式积的形式,故D错;故答案为B.【题目点拨】本题考查了因式分解,准确的理解因式分解的定义是解答本题的关键。5、B【解题分析】
根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【题目详解】解:,是分式,共2个,
故选:B.【题目点拨】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看是的形式,从本质上看分母必须含有字母.6、D【解题分析】
利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【题目详解】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,
∴AB=AD=5,
∴DO=AD2-AO2=52-32=4,
∴点C【题目点拨】本题考查菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.7、A【解题分析】
根据平行线分线段成比例定理得到,然后利用比例性质可求出EF的长.【题目详解】解:∵a∥b∥c,∴,即,∴EF=2.1.故选:A.【题目点拨】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.8、B【解题分析】①样本的方差越小,波动性越小,说明样本稳定性越好,故①正确;②一组数据的众数不只有一个,有时有好几个,故②错误;③一组数据的中位数不一定是这组数据中的某一数,若这组数据有偶数个即是将一组数据从小到大重新排列后最中间两个数的平均数,故③错误;④数据:2,2,3,2,2,5的众数为2,故④错误;⑤一组数据的方差不一定是正数,也可能为零,故⑤错误.所以说法正确的个数是1个.故选B.9、A【解题分析】
解:B.摸奖活动中奖是一个随机事件,因此,摸100次奖是否中奖也是随机事件;C.一副扑克牌中,随意抽取一张是红桃K,这是随机事件;D.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是故选A.【题目点拨】本题考查随机事件.10、C【解题分析】试题分析:本题考查了点的坐标、关于原点的点的横坐标互为相反数,纵坐标互为相反数;点的坐标向左平移减,向右平移加,向上平移加,向下平移减,纵坐标不变;根据关于原点的点的横坐标互为相反数,纵坐标互为相反数,即平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),可得关于原点的对称点,再根据点的坐标向左平移减,纵坐标不变,可得答案.解:在直角坐标系中,将点(﹣2,3)关于原点的对称点是(2,﹣3),再向左平移2个单位长度得到的点的坐标是(0,﹣3),故选C.考点:1.关于原点对称的点的坐标;2.坐标与图形变化-平移.二、填空题(每小题3分,共24分)11、20:15:1.【解题分析】
根据勾股定理的逆定理得到这个三角形是直角三角形,根据三角形的面积公式求出斜边上的高,然后计算即可.【题目详解】解:设三角形的三边分别为3x、4x、5x,∵(3x)2+(4x)2=25x2=(5x)2,∴这个三角形是直角三角形,设斜边上的高为h,则×3x×4x=×5x×h,解得,h=,则这个三角形的三边上的高之比=4x:3x:=20:15:1,故答案为:20:15:1.【题目点拨】本题考查的是勾股定理的逆定理、三角形的面积计算,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.12、1【解题分析】
由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【题目详解】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE=.故答案为:1.【题目点拨】本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.13、2.1×10﹣1【解题分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:小数0.00002l用科学记数法表示为2.1×10-1.
故答案为2.1×10-1.【题目点拨】本题考查了用科学记数法表示较小的数,一般形式为a×,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、1.08×10-5【解题分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.0000108=1.08×10-5.故答案为1.08×10-5.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、(﹣1,0).【解题分析】
根据点B与点A关于直线x=1对称确定点B的坐标即可.【题目详解】∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=1对称,而对称轴是直线x=1,点A的坐标为(3,0),∴点B的坐标是(﹣1,0).故答案为(﹣1,0).【题目点拨】本题考查了二次函数的对称性,熟知二次函数的图象关于对称轴对称是解决问题的关键.16、.【解题分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.17、y=-x-1(答案不唯一).【解题分析】
根据y随着x的增大而减小推断出k<1的关系,再利用过点(1,-2)来确定函数的解析式.【题目详解】解:设一次函数解析式为y=kx+b,∵一次函数y随着x的增大而减小,
∴k<1.
又∵直线过点(1,-2),
∴解析式可以为:y=-x-1等.
故答案为:y=-x-1(答案不唯一).【题目点拨】此题主要考查了一次函数的性质,得出k的符号进而求出是解题关键.本题是开放题,答案不唯一。18、21(答案不唯一,满足即可)【解题分析】
若关于x的一元二次方程有两个实数根,所以△=b2-4ac≥0,建立关于b与c的不等式,求得它们的关系后,写出一组满足题意的b,c的值.【题目详解】解:∵关于x的一元二次方程有两个实数根,
∴△=b2-4ac≥0,
即b2-4×c=b2-c≥0,
∴b=2,c=1能满足方程.故答案为2,1(答案不唯一,满足即可).【题目点拨】本题考查根的判别式,掌握方程有两个实数根的情况是△≥0是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)当t为4.5秒或0.5秒时,四边形EGFH是矩形;(3)t为秒时,四边形EGFH是菱形.【解题分析】
(1)根据勾股定理求出AC,证明△AFG≌△CEH,根据全等三角形的性质得到GF=HE,利用内错角相等得GF∥HE,根据平行四边形的判定可得结论;(2)如图1,连接GH,分AC-AE-CF=1.AE+CF-AC=1两种情况,列方程计算即可;(3)连接AG.CH,判定四边形AGCH是菱形,得到AG=CG,根据勾股定理求出BG,得到AB+BG的长,根据题意解答.【题目详解】解:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴∠BAC=∠DCA,∵AB=6cm,BC=1cm,∴AC=10cm,∵G、H分别是AB、DC的中点,∴AG=AB,CH=CD,∴AG=CH,∵E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,∴AE=CF,∴AF=CE,∴△AGF≌△CHE(SAS),∴GF=HE,∠AFG=∠CEH,∴GF∥HE,∴以E、G、F、H为顶点的四边形始终是平行四边形;(2)如图1,连接GH,由(1)可知四边形EGFH是平行四边形,∵G、H分别是AB.DC的中点,∴GH=BC=1cm,∴当EF=GH=1cm时,四边形EGFH是矩形,分两种情况:①若AE=CF=2t,则EF=10-4t=1,解得:t=0.5,②若AE=CF=2t,则EF=2t+2t-10=1,解得:t=4.5,即当t为4.5秒或0.5秒时,四边形EGFH是矩形;(3)如图2,连接AG、CH,∵四边形GEHF是菱形,∴GH⊥EF,OG=OH,OE=OF,∵AF=CE∴OA=OC,∴四边形AGCH是菱形,∴AG=CG,设AG=CG=x,则BG=1-x,由勾股定理得:AB2+BG2=AG2,即62+(1-x)2=x2,解得:x=,∴BG=1-=,∴AB+BG=6+=,t=÷2=,即t为秒时,四边形EGFH是菱形.【题目点拨】本题是四边形的综合题,考查了矩形的性质.平行四边形的判定和菱形的判定,掌握矩形的性质定理.菱形的判定定理,灵活运用分情况讨论思想是解题的关键.20、21【解题分析】
设每次倒出药液为x升,第一次倒出后剩下的纯药液为63(1-),第二次加满水再倒出x升溶液,剩下的纯药液为63(1-)(1-)又知道剩下的纯药液为28升,列方程即可求出x.【题目详解】设每次倒出液体x升,63(1-)2=28,x1=105(舍),x2=21.答:每次倒出液体21升.【题目点拨】本题考查了一元二次方程的应用,根据题目给出的条件,找出合适的等量关系是解题的关键.21、(1)40,1,2;(2)126;(3)见解析;(4)315人.【解题分析】
(1)根据统计图中的数据可以求得众数、中位数,(2)据统计图中的数据可以求得相应的圆心角的度数;(3)根据统计图中的数据,可以求得读一部的学生数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以求得看完3部以上(包含3部)的有多少人.【题目详解】解:(1)本次调查的学生有:10×25%=40(人),读一部的有:40-2-10-8-6=14(人),本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,(2)扇形统计图中“1部”所在扇形的圆心角为:,故答案为:.(3)补全的条形统计图如右图所示;(4))∵=315(人),∴看完3部以上(包含3部)的有315人.【题目点拨】本题考查条形统计图、扇形统计图、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.22、(1)直线l2的解析式为y=4x+3;(2)≤d≤.【解题分析】
(1)根据平移的方向和距离即可得到A(8,0),D(0,3),再根据待定系数法即可得到直线l2的解析式;(2)根据一次函数图象上点的坐标特征,即可得到E(4,-2),再根据y=x-4中,令x=0,则y=-4,可得B(0,-4),依据直线l2与线段BE有交点,即可得到平移距离d的取值范围.【题目详解】(1)∵将点A向上平移3个单位,再向左平移8个单位恰好能与点D重合,∴点A离y轴8个单位,点D离x轴3个单位,∴A(8,0),D(0,3),把点C(-2,m)代入l1:y=x-4,可得m=-1-4=-5,∴C(-2,-5),设直线l2的解析式为y=kx+b,把D(0,3),C(-2,-5),代入可得,解得,∴直线l2的解析式为y=4x+3;(2)把E(n,-2)代入直线l1:y=x-4,可得-2=n-4,解得n=4,∴E(4,-2),在y=x-4中,令x=0,则y=-4,∴B(0,-4),设直线l2沿x轴向右平移后的解析式为y=4(x-n)+3,当平移后的直线经过点B(0,-4)时,-4=4(0-n)+3,解得n=;当平移后的直线经过点E(4,-2)时,-2=4(4-n)+3,解得n=.∵直线l2与线段BE有交点,∴平移距离d的取值范围为:≤d≤.【题目点拨】本题主要考查了一次函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第19课 科学技术的重大成果课件
- 2024年专业电工施工协议典范
- 中国特色社会主义基本原理(上)
- 2024年度层电梯厅装潢协议模板
- 2024年无薪实习劳动协议
- 2024年仓库租赁法律协议细则
- 2024年型车辆采购协议
- 2024届安徽省合肥高升学校高三八校第一次适应性考试数学试题试卷
- 2024建筑业劳务施工协议文本
- 2023-2024学年浙江省温州市九校下期第二次质量考评(3月)高三数学试题
- 网络工程职业生涯展示
- 《汽车钣金喷涂技术》 课件 任务11.2车身钢制外板外形修复机修复
- 不锈钢电镀工艺流程
- IgG4相关疾病的护理查房
- 景区服务提升培训课件
- 体育行业的运动场馆安全规范培训
- 小区大门改进方案
- 医院建设目标及规划
- 2024年中考历史九年级上册重点知识点复习提纲(部编版)
- 眼科门诊经营方案
- 《声声慢(寻寻觅觅)》
评论
0/150
提交评论