版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
18.2.3正方形的判定人教版八年级下册第二十章数据的分析哈密市第七中学李涛问题:什么是正方形?正方形有哪些性质?ABCD正方形:有一组邻边相等,并且有一个角是直角的平行四边形.正方形性质:①四个角都是直角;
②四条边都相等; ③对角线相等且互相垂直平分.O复习引入活动1:准备一张矩形的纸片,按照下图折叠,然后展开,得到一个四边形.问题1:折叠后得到的特殊四边形是什么四边形?为什么?正方形讲授新课活动2:把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状.问题2:经过变化后得到特殊四边形是什么四边形?正方形总结归纳你能总结出正方形有哪些判定方法吗?矩形法:正方形=一邻边相等+矩形2定义法:正方形=一邻边相等+一个直角+平行四边形
1菱形法:正方形=一个直角+菱形3对角线法:正方形=互相垂直+互相平分+相等4例1在正方形ABCD中,点E、F、G、H分别在各边上,且AE=BF=CM=DN.四边形EFMN是正方形吗?为什么?MN证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠A=∠B=∠C=∠D=90°,
∵AE=BF=CM=DN,∴AN=BE=CF=DM.分析:由已知可证△AEN≌△BFE≌△CMF≌△DNM,得四边形EFMN是菱形,再证有一个角是直角即可.典例精析在△AEN、△BFE、△CMF、△DNM中,
AE=BF=CM=DN
∠A=∠B=∠C=∠D
AN=BE=CF=DM
∴△AEN≌△BFE≌△CMF≌△DNM
∴EN=FE=MF=NM,∠ANE=∠BEF
∴四边形EFMN是菱形,
∠NEF=180°-(∠AEN+∠BEF)=180°-(∠AEN+∠ANE)=180°-90°=90°.
∴四边形EFMN是正方形.MN证明:∵DE⊥AC,DF⊥AB∴∠DEC=∠DFC=90°.又∵∠C=90°∴四边形ADFC是矩形.过点D作DG⊥AB,垂足为G∵AD是∠CAB的平分线DE⊥AC,DG⊥AB∴DE=DG同理:DG=DF∴ED=DF∴四边形ADFC是正方形.例2如图,在直角三角形中,∠C=90°,∠A、∠B的平分线交于点D.DE⊥AC,DF⊥AB.求证:四边形CEDF为正方形.ABCDEFG例3如图,EG,FH过正方形ABCD的对角线的交点O,且EG⊥FH.求证:四边形EFGH是正方形.证明:∵四边形ABCD为正方形,∴OB=OC,∠ABO=∠BCO=45°,∠BOC=90°=∠COH+∠BOH.∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可证:OE=OF=OG,BACBOEHGF∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO
,即EG=HF,∴四边形EFGH为正方形.BACBOEHGF做一做:顺次连接任意四边形各边中点所得的四边形是平行四边形.顺次连接矩形、正方形各边中点能得到怎样的特殊平行四边形?ABCDABCDABCD矩形正方形任意四边形平行四边形菱形正方形EFGHEFGHEFGH5种判定方法三个角是直角四条边相等一个角是直角或对角线相等一组邻边相等或对角线垂直一组邻边相等或对角线垂直一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年合作共享:股权合作协议
- 2024年长春客运从业资格证考试题库APP
- 2024年超、高速离心机项目申请报告模范
- 2024年自动化生产线成套装备项目申请报告模范
- 2024年信用担保借款合同范本
- 2024年光伏产业链协同发展协议
- 2024年铜仁客运从业资格证考试题库
- 仓储物流供应商选择与评价
- 班主任与学生关系建设经验发言稿
- 会员制度与市场定位策略案例
- 《坦克的发展历程》课件
- 设备维保和维保服务外包
- 2018年公安机关人民警察高级执法资格试题
- 电动汽车的电控系统
- 安全运维堡垒机部署方案
- 2024届江苏省苏州市立达中学数学七年级第二学期期末综合测试试题含解析
- 国开电大绩效与薪酬实务(河北)形考任务三参考答案
- 农田土地平整工程技术规程
- 2023年黑龙江事业单位公共基础知识真题及答案
- 化学高二-2022-2023学年北京市海淀区高二(上)期末化学试卷
- 急性左心衰课件
评论
0/150
提交评论