版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
23.2.1中心对称一、复习提问:1.什么是轴对称呢?2.关于轴对称的两个图形有哪些性质?
把一个图形沿着某一条直线折叠能与另一个图形完全重合,那么就说这两个图形关于这条直线对称或轴对称.1.两个图形是全等形.2.对称轴是对称点连线的垂直平分线.3.图形的旋转:
在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形变换称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角.4.图形的旋转的性质:①、旋转前后的图形全等.②、对应点到旋转中心的距离相等.③、对应点与旋转中心所连线段的夹角等于旋转角.5.图形的旋转的作图:先连结,再作角,最后截取.ADEACB二.新课探究
如果将一个图形绕一点旋转180度得到一个新的图形,这样的两个图形是什么关系呢?你知道吗?可以告诉我吗?(1)把其中一个图案绕点O旋转180°.你有什么发现?
重合重合研究观察(2)线段AC,BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°.你有什么发现?OAODBC
像这样把一个图形绕着某一点旋转180度,如果它能够和另一个图形重合,那么,我们就说这两个图形关于这个点对称或中心对称,这个点就叫对称中心,这两个图形中的对应点,叫做关于中心的对称点.观察:C、A、E三点的位置关系怎样?线段AC、AE的大小关系呢?ADEACBC、A、E三点在一条直线上或∠CAE=180°.AC=AE1.中心对称的定义:ABC)60°B`A`120°O)60°120°180°C`
180°思考:1.把△ABC绕着O点旋转60°得到的△A`B`C`,这两个三角形成中心对称吗?2.把△ABC绕着O点旋转120°得到的△A`B`C`,这两个三角形成中心对称吗?3.把△ABC绕着O点旋转180°,得到的△A`B`C`,这两个三角形成中心对称吗?不是,因为旋转了60°不是,因为旋转了120°是,因为旋转了180
°问题1.2.与问题3有什么区别和联系呢?ABCABC旋转三角板,画关于点O对称的两个三角形:第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A′B′C′;A’B’C’OABC第三步,移开三角板.合作探究:合作探究:旋转三角板,画关于点O对称的两个三角形:分别连接AA’,BB’,CC’。点O在线段AA′上吗?如果在,在什么位置?△ABC与△A′B′C′有什么关系?(1)点O是线段AA′的中点
(为什?)(2)△ABC≌△A′B′C′(为什么?)第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A′B′C′;OA’B’C’CBA很显然画出的△ABC与△A’B’C’关于点O对称.第三步,移开三角板.(1).
点A′是绕点A旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.
同样地,点O是线段BB′CC′的中点.
(2).在△AOB与△A′OB′中OA=OA′,OB=OB′∠AOB=∠AOB′∴△AOB≌△A′OB′(SAS)∴AB=A′B′同理:BC=B′C′,AC=A′C′∴△ABC≌△A′B′C′(SSS)证明:OA’B’C’CBA下图中△A′B′C′与△ABC关于点O是成中心对称的,你能从图中找到哪些等量关系?A’B’C’ABCO(1)OA=OA′、OB=OB′、OC=OC′(2)△ABC≌△A′B′C′找一找:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,并且被对称中心所平分.(2)关于中心对称的两个图形是全等形。2.归纳:中心对称的性质想一想3.中心对称与轴对称有什么区别?又有什么联系?轴对称中心对称有一条对称轴---直线有一个对称中心—点图形沿对称轴对折(翻折1800)后重合图形绕对称中心旋转1800后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心,且被对称中心平分类比你能得到什么结论?4.中心对称的作图AOA'连结OA,并延长到A',使OA'=OA,例1、(1)已知A点和O点,画出点A关于点O的对称点A'则A'是所求的点例1.(2)、已知线段AB和O点,画出线段AB关于点O的对称线段A'B'OA'B'AB连结AO并延长到A',使OA'=OA,则得A的对称点A'连结BO并延长到B',使OB'=OB,则得B的对称点B'连结A'B',则线段A'B'是所画线段例1(3).如图.选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.解:A′C′B′△A′B′C′即为所求的三角形。怎么办?可以帮帮我吗?例1(4)已知四边形ABCD和点O,画四边形A′B′C′D′,使它与已知四边形关于这一点对称。ABA′C′B′D′DOC四边形A1B1C1D1即为所求的图形。画一个与已知四边形ABCD中心对称图形。(1)以顶点A为对称中心;(2)以BC边的中点为对称中心。提高练习DABCEFGMDABCO.N你知道怎么办吗?
如图,已知△ABC与△A’B’C’中心对称,求出它们的对称中心O。ABCA’B’C’应用怎么办?可以帮帮我吗?解法一:根据观察,B、B’应是对应点,连结BB’,用刻度尺找出BB’的中点O,则点O即为所求(如图)ABCA’B’C’OO解法二:根据观察,B、B’及C、C’应是两组对应点,连结BB’、CC’,BB’、CC’相交于点O,则点O即为所求(如图)。ABCA’B’C’练习P70.1.2你学会了吗?谢谢!下课了!再见一、回顾:
图形的旋转
23.1图形的旋转
在平面内,把一个图形绕一个定点,沿某个方向转动一个角度,像这样的图形变换称作旋转这个定点称为旋转中心所转动的角称为旋转角旋转的定义旋转三要素旋转中心、旋转方向、旋转角度1、旋转前后的图形全等2、对应点到旋转中心的距离相等3、对应点与旋转中心连线的夹角
等于旋转角旋转的基本性质二、新课:23.2.1中心对称ABCA’C’B’O一、看看下面的图形旋转ABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’OABCA’C’B’O有什么发现?把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,也称这两个图形成中心对称ABCA’C’B’O这个点叫作对称中心2个图形中的对应点叫做对称点二、中心对称概念(2)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分.(1)关于中心对称的两个图形是全等形;三、中心对称性质AA′B′BO
2、线段的中心对称线段的作法AOA′1、点的中心对称点的作法以点O为对称中心,作出点A的对称点A′;
以点O为对称中心,作出线段AB的对称线段点A′B′
点A′即为所求的点四、灵活运用五、轴对称与中心对称定义、性质对比对:轴对称中心对称定义123有一条对称轴—直线图形沿轴对折,(翻转达180度。)翻转后与另一个图形重合。有一个对称中心—点。图形绕中心旋转180度。旋转后与另一个图形重合。性质12两个图形是全等形。对称轴是对称点连线的垂直平分线。两个图形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全职合同范本(2篇)
- 广告业务员销售工作参考计划范文2
- 光船租赁合同范本
- 汽车库租赁合同
- 2025年石油钻探、开采专用设备项目发展计划
- 2025年金属切削机床项目合作计划书
- 2024担保协议标准格式汇编版B版
- 2024年股权转让:资金监管协议模板3篇
- 2024幼儿园环境创设与设施采购合同范本3篇
- 第4课 洋务运动(分层作业)(原卷版)
- 铁路基础知识题库单选题100道及答案解析
- 口腔正畸科普课件
- 2024年广东省普通高中学业水平合格性地理试卷(1月份)
- 住宅楼安全性检测鉴定方案
- 配送管理招聘面试题与参考回答2024年
- 江苏省语文小学三年级上学期期末试题及解答参考(2024年)
- 黑龙江哈尔滨市省实验中学2025届数学高一上期末监测试题含解析
- 小学一年级数学思维训练100题(附答案)
- 安全生产治本攻坚三年行动方案(一般工贸) 2024
- 2024年广东省广州市黄埔区中考一模语文试题及答案
- 饭堂挂靠协议合同范本
评论
0/150
提交评论