版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省唐山丰南区六校联考八年级数学第二学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.一次环保知识竞赛共有25道题,每一题答对得4分,答错或不答都扣1分,在这次竟赛中,小明被评为优秀(85分或85分以上),小明至少要答对多少道题?如果设小明答对了x道题,根据题意列式得()A.4x﹣1×(25﹣x)>85 B.4x+1×(25﹣x)≤85C.4x﹣1×(25﹣x)≥85 D.4x+1×(25﹣x)>852.下列各式中,化简后能与合并的是()A. B. C. D.3.如图,正方形和正方形中,点在上,,,是的中点,那么的长是()A.2 B. C. D.4.下列四边形中,是中心对称而不是轴对称图形的是()A.平行四边形 B.矩形 C.菱形 D.正方形5.已知实数a、b,若a>b,则下列结论正确的是A. B. C. D.6.如图所示,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC5O5的面积为()A.1cm2 B.2cm2 C.cm2 D.cm27.星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是()A.从家出发,休息一会,就回家B.从家出发,一直散步(没有停留),然后回家C.从家出发,休息一会,返回用时20分钟D.从家出发,休息一会,继续行走一段,然后回家8.如图,在平面直角坐标系中,直线y=x-与矩形ABCD的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.9.某百货商场试销一批新款衬衫,一周内销售情况如表所示。该商场经理想要了解哪种型号最畅销,那么他最关注的统计量是()型号383940414243数量(件)23313548298A.众数 B.中位数 C.平均数 D.方差10.若点P(a,2)在第二象限,则a的值可以是()A. B.0 C.1 D.211.将函数y=2x的图象沿y轴向下平移3个单位长度后,所得函数解析式为()A.y=2x+3 B.y=2x-3 C.y=2(x+3) D.y=2(x-3)12.已知一组数据a.b.c的平均数为5,方差为4,那么数据,,的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.10二、填空题(每题4分,共24分)13.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到点D,则橡皮筋被拉长了_____cm.14.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长度为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.若四边形ABEF的周长为16,∠C=60°,则四边形ABEF的面积是___.15.在□ABCD中,∠A,∠B的度数之比为2:7,则∠C=__________.16.当x分别取值,,,,,1,2,,2007,2008,2009时,计算代数式的值,将所得的结果相加,其和等于______.17.如图,在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=_____度.18.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是_____.三、解答题(共78分)19.(8分)在“6.26”国际禁毒日到来之际,为了普及禁毒知识,提高市民禁毒意识,某区发放了一批“关爱生命,拒绝毒品”的宣传资料.据统计,甲小区共收到宣传资料350份,乙小区共收到宣传资料100份,甲小区住户比乙小区住户的3倍多25户,若两小区每户平均收到资料的数量相同.求这两小区各有多少户住户?20.(8分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为(元),在乙采摘园所需总费用为(元),图中折线OAB表示与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求、与x的函数表达式;(3)在图中画出与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.21.(8分)已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=1.(1)求证:此方程总有两个实数根;(2)若此方程有一个根大于1且小于1,求k的取值范围.22.(10分)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=5,0为坐标原点,设△OPA的面积为S.(1)求S关于x的函数表达式;(2)求x的取值范围;(3)当S=4时,求P点的坐标.23.(10分)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.24.(10分)某学校欲招聘一名新教师,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制)如下表所示:应试者面试成绩笔试成绩才艺甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定应聘者的排名顺序;(2)学校规定:笔试、面试、才艺得分分别不得低于80分、80分、70分,并按照60%、30%、10%的比例计入个人总分,请你说明谁会被录用?25.(12分)如图,中,已知,,于D,,,如何求AD的长呢?心怡同学灵活运用对称知识,将图形进行翻折变换,巧妙地解答了此题,请按照她的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出、的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,试证明四边形AEGF是正方形;(2)设,利用勾股定理,建立关于x的方程模型,求出x的值.26.矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】
根据题意可以列出相应的不等式,从而可以解答本题.【题目详解】解:由题意可得,
4x-1×(25-x)≥85,
故选C.【题目点拨】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.2、B【解题分析】
分别化简,与是同类二次根式才能合并.【题目详解】解:A不能与合并B能与合并C不能与合并D不能与合并故答案为:B【题目点拨】本题考查知识点:同类二次根式.解题关键点:将二次根式化简成最简二次更是,以及理解同类二次根式的定义.3、D【解题分析】
连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【题目详解】如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,,∵H是AF的中点,∴CH=AF=×=.故选D.【题目点拨】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.4、A【解题分析】【分析】根据理解中心对称图形和轴对称图形定义,可以判断.【题目详解】平行四边形是中心对称图形,不是轴对称图形;矩形是中心对称图形,也是轴对称图形;菱形是中心对称图形,也是轴对称图形;正方形是中心对称图形,也是轴对称图形.只有选项A符合条件.故选A【题目点拨】本题考核知识点:中心对称图形和轴对称图形.解题关键点:理解中心对称图形和轴对称图形定义.5、D【解题分析】
不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A、B、C错误,D正确.故选D.6、D【解题分析】
根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5的面积.【题目详解】解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1=S1,又S△ABO1=S矩形,∴S1=S矩形=5=;设ABC2O2为平行四边形为S2,∴S△ABO2=S2,又S△ABO2=S矩形,∴S2=S矩形==;,…,同理:设ABC5O5为平行四边形为S5,S5==.故选:D.【题目点拨】此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.7、D【解题分析】
利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【题目详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.
故选:D.【题目点拨】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.8、B【解题分析】
根据直线解析式分别求出点E、F的坐标,然后利用三角形的面积公式求解即可.【题目详解】∵当y=0时,x-=0,解得x=1,
∴点E的坐标是(1,0),即OE=1,
∵OC=4,
∴EC=OC-OE=4-1=3,
∴点F的横坐标是4,
∴y==2,即CF=2,
∴△CEF的面积=×CE×CF=×3×2=3
故选B.【题目点拨】本题考查的是一次函数图象上点的坐标特点,根据直线的解析式求出点E、F的坐标是解题的关键.9、A【解题分析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是对该品牌衬衫的尺码数销售情况作调查,那么应该关注那种尺码销的最多,故值得关注的是众数.【题目详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选A.【题目点拨】本题考查了统计的有关知识,熟知平均数、中位数、众数、方差的意义是解决问题的关键.10、A【解题分析】
根据第二象限内点的横坐标是负数判断.【题目详解】解:∵点P(a,1)在第二象限,∴a<0,∴-1、0、1、1四个数中,a的值可以是-1.故选:A.【题目点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).11、B【解题分析】
根据“上加下减”的原则进行解答即可.【题目详解】把函数y=2x的图象向下平移1个单位后,所得图象的函数关系式为y=2x-1.故选B.【题目点拨】本题考查的是一次函数的图象与几何变换,熟知函数图象平移时“上加下减,左加右减”的法则是解答此题的关键.12、B【解题分析】
根据数据a,b,c的平均数以及方差即可求出a-2,b-2,c-2的平均数和方差.【题目详解】∵数据a,b,c的平均数是5,∴,∴,∴数据a-2,b-2,c-2的平均数是3,∵数据a,b,c的方差为4,∴∴a-2,b-2,c-2的方差所以B选项正确.【题目点拨】主要考查平均数和方差的公式计算以及灵活运用.二、填空题(每题4分,共24分)13、2.【解题分析】
根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【题目详解】Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故答案为2.【题目点拨】此题主要考查了等腰三角形的性质以及勾股定理的应用.14、8.【解题分析】
由作法得AE平分∠BAD,AB=AF,所以∠1=∠2,再证明AF=BE,则可判断四边形AFEB为平行四边形,于是利用AB=AF可判断四边形ABEF是菱形;根据菱形的性质得AG=EG,BF⊥AE,求出BF和AG的长,即可得出结果.【题目详解】由作法得AE平分∠BAD,AB=AF,则∠1=∠2,∵四边形ABCD为平行四边形,∴BE∥AF,∠BAF=∠C=60°,∴∠2=∠BEA,∴∠1=∠BEA=30°,∴BA=BE,∴AF=BE,∴四边形AFEB为平行四边形,△ABF是等边三角形,而AB=AF,∴四边形ABEF是菱形;∴BF⊥AE,AG=EG,∵四边形ABEF的周长为16,∴AF=BF=AB=4,在Rt△ABG中,∠1=30°,∴BG=AB=2,AG=BG=2,∴AE=2AG=,∴菱形ABEF的面积;故答案为:【题目点拨】本题考查了基本作图、平行四边形的性质与判定、菱形的判定与性质、等边三角形的判定与性质;证明四边形ABEF是菱形是解题的关键.15、40°【解题分析】分析:平行四边形两组对边分别平行,两直线平行,同旁内角互补.又因为∠A,∠B的度数之比为2:1.所以可求得两角分别是40°,140°,根据平行四边形的两组对角分别相等,可得∠C等于40°.详解:∵ABCD是平行四边形,∴AB∥CD,∠A=∠C,∴∠A+∠B=180°.又∵∠A,∠B的度数之比为2:1,∴∠A=180°×=40°,∠B=180°×=140°,∴∠C=40°.故答案为:40°.点睛:本题考查的是平行四变形的性质:平行四边形两组对边分别平行;平行四边形的两组对角分别相等.16、1【解题分析】
先把和代入代数式,并对代数式化简,得到它们的和为1,然后把代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.【题目详解】因为,即当x分别取值,为正整数时,计算所得的代数式的值之和为1;而当时,.因此,当x分别取值,,,,,1,2,,2117,2118,2119时,计算所得各代数式的值之和为1.故答案为:1.【题目点拨】本题考查的是代数式的求值,本题的x的取值较多,并且除外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为1,这样计算起来就很方便.17、【解题分析】
由DB=DC,∠C=70°可以得到∠DBC=∠C=70°,又由AD∥BC推出∠ADB=∠DBC=∠C=70°,而∠AED=90°,根据直角三角形两锐角互余即可求得答案.由此可以求出∠DAE.【题目详解】∵DB=DC,∠C=70°,∴∠DBC=∠C=70°,在平行四边形ABCD中,∵AD∥BC,AE⊥BD,∴∠ADB=∠DBC=∠C=70°,∠AED=90°,∴∠DAE=-70°=20°.故填空为:20°.【题目点拨】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形两锐角互余的性质,熟练掌握相关性质与定理是解题的关键.18、a<﹣1【解题分析】
根据不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变即可解本题.【题目详解】解:∵不等式(a+1)x>a+1的解集为x<1,∴a+1<0,∴a<﹣1,故答案为:a<﹣1.【题目点拨】本题考查了不等式的基本性质,熟练掌握不等式两边同时除以一个负数不等号方向改变是解决本题的关键.三、解答题(共78分)19、甲小区住户有175户,乙小区住户有50户【解题分析】
设乙小区住户为x户,则甲小区住户有:(3x+25)户,根据每户平均收到资料的数量相同,列出方程,解答即可.【题目详解】解:设乙小区住户为x户,根据题意得:,解得:,经检验是原方程的解,∴甲小区住户,所以,甲小区住户有175户,乙小区住户有50户.【题目点拨】本题考查了分式方程的实际应用,解题的关键是找到题目中的关系,列出分式方程.20、(1)1;(2),;(3)<x<.【解题分析】试题分析:(1)根据单价=总价÷数量,即可解决问题.(2)y1函数表达式=50+单价×数量,y2与x的函数表达式结合图象利用待定系数法即可解决.(3)画出函数图象后y1在y2下面即可解决问题.试题解析:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克10÷10=1元.故答案为1.(2)由题意,;(3)函数y1的图象如图所示,由解得:,所以点F坐标(,125),由,解得:,所以点E坐标(,650).由图象可知甲采摘园所需总费用较少时<x<.考点:分段函数;函数最值问题.21、(3)证明见解析;(2)3<k<2.【解题分析】
(3)根据方程的系数结合根的判别式,求得判别式恒成立,因此得证;(2)利用求根公式求根,根据有一个跟大于3且小于3,列出关于的不等式组,解之即可.【题目详解】(3)证明:△=b2-4ac=[-(k+3)]2-4×(2k-2)=k2-6k+9=(k-3)2,∵(k-3)2≥3,即△≥3,∴此方程总有两个实数根,(2)解:解得
x3=k-3,x2=2,∵此方程有一个根大于3且小于3,而x2>3,∴3<x3<3,即3<k-3<3.∴3<k<2,即k的取值范围为:3<k<2.【题目点拨】本题考查了根的判别式,解题的关键是:(3)牢记“当时,方程总有两个实数根”,(2)正确找出不等量关系列不等式组.22、(1)S=10﹣2x;(2)0<x<5;(3)(3,2)【解题分析】
(1)根据题意画出图形,由x+y=5可知y=5﹣x,再由三角形的面积公式即可得出结论;
(2)由点P(x,y)在第一象限,且x+y=5得出x的取值范围即可;
(3)把S=4代入(1)中的关系式求出x的值,进而可得出y的值.【题目详解】(1)如图:∵x+y=5,∴y=5﹣x,∴S=×4×(5﹣x)=10﹣2x;(2)∵点P(x,y)在第一象限,且x+y=5,∴0<x<5;(3)∵由(1)知,S=10﹣2x,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).【题目点拨】本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.23、(1)详见解析;(2)详见解析【解题分析】
(1)根据平行四边形的性质、等腰三角形的性质,利用全等三角形的判定定理SAS可以证得△ADC≌△ECD;(2)利用等腰三角形的“三合一”性质推知AD⊥BC,即∠ADC=90°;由平行四边形的判定定理(对边平行且相等是四边形是平行四边形)证得四边形ADCE是平行四边形,所以有一个角是直角的平行四边形是矩形.【题目详解】(1)∵四边形ABDE是平行四边形,∴AB∥DE,AB=DE;∴∠B=∠EDC;又∵AB=AC,∴AC=DE,∠B=∠ACB,∴∠EDC=∠ACD;∵在△ADC和△ECD中,AC=ED∠ACD=∠EDC∴△ADC≌△ECD(SAS);(2)∵四边形ABDE是平行四边形(已知),∴BD∥AE,BD=AE(平行四边形的对边平行且相等),∴AE∥CD;又∵BD=CD,∴AE=CD,∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∴∠ADC=90°,∴▱ADCE是矩形.24、(1)排名顺序为:甲、丙、乙;(2)丙会被录用.【解题分析】
(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;(2)先算出甲、乙、丙的总分,根据公司的规定先排除甲,再根据丙的总分最高,即可得出丙被录用【题目详解】(1),,∴∴排名顺序为:甲、丙、乙.(2)由题意可知,只有甲的笔试成绩只有79分,不符合规定乙的成绩为:丙的成绩为:∵甲先被淘汰,按照学校规定,丙的成绩高于乙的成绩,乙又被淘汰∴丙会被录用.【题目点拨】此题考查加权平均数,掌握运算法则是解题关键25、(1)见详解;(2)18【解题分析】
(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;
(2)利用勾股定理,建立关于x的方程模型(x-1)2+(x-9)2=152,求出AD=x=1.【题目详解】解:(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°
∴∠EAF=90°
又∵AD⊥BC
∴∠E=∠ADB=90°,∠F=∠ADC=90°
又∵AE=AD,AF=AD
∴AE=AF
∴四边形AEGF是正方形(2)解:设AD=x,则AE=EG=GF=x
∵BD=1,DC=9
∴BE=1,CF=9
∴BG=x-1,CG=x-9
在Rt△BGC中,BG2+CG2=BC2
∴(x-1)2+(x-9)2=152
∴(x-1)2+(x-9)2=152,化简得,x2-15x-54=0,整理得(x-18)(x+3)=0
解得x1=18,x2=-3(舍去)
所以AD=x=18【题目点拨】本题考查图形的翻折变换和利用勾股定理,建立关于x的方程模型的解题思想.要能灵活运用.26、(1)BD=;(2)y=﹣x+6;(3)M(,0),N(0,)【解题分析】
(1)如图1,当点D落在边BC上时,BD2=AD2-AB2,即可求解;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年6月福建省普通高中学业水平合格性考试化学试题(解析版)
- 西南林业大学《材料研究及分析方法》2022-2023学年第一学期期末试卷
- 西京学院《企业级应用开发》2023-2024学年期末试卷
- 高中化学:油脂
- 西京学院《电力系统分析实验》2022-2023学年期末试卷
- 人教版教育课件
- 西华师范大学《油画基础》2022-2023学年第一学期期末试卷
- 西华师范大学《宪法学》2021-2022学年期末试卷
- 西华师范大学《人体解剖生理学实验》2023-2024学年第一学期期末试卷
- 录制课件功能
- 中国石化刮刮卡合同范例
- 认识他人课件教学课件
- 2024年国家公务员考试行测(副省级)真题及答案解析
- 江苏省南通市2024-2025学年八年级上学期11月期中数学试题(无答案)
- 期中阶段测试卷(试题)2024-2025学年统编版语文五年级上册
- 2023年中央机关遴选笔试真题及解析(B卷)
- 现代物流管理专业生涯发展展示
- 全国导游考试(面试)200问及面试内容(附答案)
- 五年级道德与法治上学期期中质量分析
- 招聘简章 招聘简章(4篇)
- 中南大学湘雅二医院心血管内科重点学科申报书
评论
0/150
提交评论