版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省深圳市高峰学校数学八下期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若分式的值等于0,则的取值是().A. B. C. D.2.点P是图①中三角形上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P’的坐标为()A. B. C. D.3.若分式有意义,则的取值范围是()A. B. C. D.4.不能判定四边形ABCD为平行四边形的题设是()A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠D C.AB=AD,BC=CD D.AB=CD,AD=BC5.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3 B.﹣5 C.7 D.﹣3或﹣56.正比例函数的图象上有两点,,则与的大小关系是()A. B. C. D.7.如图,是我国古代数学家在为《周髀算经》作注解时给出的“弦图”,给出“弦图”的这位数学家是()A.毕达哥拉斯 B.祖冲之 C.华罗庚 D.赵爽8.﹣2018的倒数是()A.2018 B. C.﹣2018 D.9.若x<y,则下列式子不成立的是()A.x-1<y-1 B. C.x+3<y+3 D.-2x<-2y10.下列计算正确的是()A. B.2 C.()2=2 D.=311.若直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是A.-1 B.0 C.1 D.212.下列运算正确的是()A.= B.=a+1 C.+=0 D.﹣=二、填空题(每题4分,共24分)13.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为________________14.2x-3>-5的解集是_________.15.如图,有公共顶点A、B的正五边形和正六边形,连接AC交正六边形于点D,则∠ADE的度数为___.16.当x________时,分式有意义.17.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是,,,,在本次射击测试中,成绩最稳定的是_____.18.已知直线与平行且经过点,则的表达式是__________.三、解答题(共78分)19.(8分)如图,若在△ABC的外部作正方形ABEF和正方形ACGH,求证:△ABC的高线AD平分线段FH20.(8分)为了了解高峰时段37路公交车从总站乘该路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:16,25,18,1,25,30,28,29,25,1.(1)请求出这10个班次乘该路车人数的平均数、众数与中位数;(2)如果37路公交车在高峰时段从总站共发出50个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?21.(8分)如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系.已知,,,点为轴上一动点,以为一边在右侧作正方形.(1)若点与点重合,请直接写出点的坐标.(2)若点在的延长线上,且,求点的坐标.(3)若,求点的坐标.22.(10分)如图,直线y=x+m与x轴交于点A(-3,0),直线y=-x+2与x轴、y轴分别交于B、C两点,并与直线y=x+m相交于点D,(1)点D的坐标为;(2)求四边形AOCD的面积;(3)若点P为x轴上一动点,当PD+PC的值最小时,求点P的坐标.23.(10分)某校举办了一次趣味数学党赛,满分100分,学生得分均为整数,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100乙组:50,60,60,60,70,70,70,70,80,90.组别平均分中位数方差甲组68a376乙组b70(1)以生成绩统计分析表中a=_________分,b=_________分.(2)小亮同学说:“这次赛我得了70分,在我们小组中属中游略偏上!”双察上面表格判断,小亮可能是甲、乙哪个组的学生?并说明理由。(3)计算乙组成的方差,如果你是该校数学竞赛的教练员,现在需要你选一组同学代表学校参加复赛,你会进择哪一组?并说明理由。24.(10分)王老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的八年(1)班和八年(2)班进行了检测。如图所示表示从两班随机抽取的10名学生的得分情况:(1)利用图中提供的信息,补全下表:班级平均分(分)中位数(分)众数(分)八年(1)班2424八年(2)班24(2)你认为那个班的学生纠错的得分情况比较整齐一些,通过计算说明理由.25.(12分)计算:(1);(2);(3)先化简再求值,其中,.26.已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC边上.(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;①求证:点F是AD的中点;②判断BE与CF的数量关系和位置关系,并说明理由;(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】
分式值为零的条件是分子等于零且分母不等于零.【题目详解】∵分式的值等于1,∴x-2=1,x+1≠1.解得:x=2.故选C.【题目点拨】本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.2、A【解题分析】
根据已知点的坐标变换发现规律进行求解.【题目详解】根据题意得(2,0)变化后的坐标为(1,0);(2,4)变化后的坐标为(1,4);故P点(a,b)变化后的坐标为故选A.【题目点拨】此题主要考查坐标的变化,解题的关键是根据题意发现规律进行求解.3、A【解题分析】
根据分式有意义的条件:分母不等于0,即可求解.【题目详解】解:根据题意得:x-1≠0,
解得:x≠1.
故选:A.【题目点拨】此题考查分式有意义的条件,正确理解条件是解题的关键.4、C【解题分析】
A.
∵AB=CD,AB∥CD,∴四边形ABCD为平行四边形(一组对边平行且相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;B.
∵∠A=∠C,∠B=∠D,∴四边形ABCD为平行四边形(两组对角分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;C.由AB=AD,BC=CD,不能判定四边形ABCD为平行四边形;D.
∵AB=CD,AD=BC,∴四边形ABCD为平行四边形(两组对边分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形故选C.【题目点拨】本题考查平行四边形的判定.5、A【解题分析】
分三种情形讨论求解即可解决问题;【题目详解】解:对于函数y=|x﹣a|,最小值为a+1.情形1:a+1=0,a=﹣1,∴y=|x+1|,此时x=﹣1时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+1,得到a=﹣2.∴y=|x+2|,符合题意.情形2:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+1,方程无解,此种情形不存在,综上所述,a=﹣2.故选A.【题目点拨】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.6、A【解题分析】
利用一次函数图象上点的坐标特征可求出y1与y1的值,比较后即可得出结论(利用一次函数的性质解决问题亦可).【题目详解】解:当x=−1时,y1=−(−1)=1;
当x=1时,y1=−1.
∵1>−1,
∴y1>y1.
故选:A.【题目点拨】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.7、D【解题分析】
我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.【题目详解】解:我国三国时期数学家赵爽在为《周髀算经》作注解时创造了一幅“弦图”,后人称其为“赵爽弦图”,“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.故答案是:D.【题目点拨】本题考查了学生对我国数学史的了解,籍此培养学生的爱国情怀和民族自豪感,增强学习数学的兴趣.8、D【解题分析】
根据倒数的概念解答即可.【题目详解】﹣2018的倒数是:﹣.故选D.【题目点拨】本题考查了倒数的知识点,解题的关键是掌握互为倒数的两个数的乘积为1.9、D【解题分析】
根据不等式的性质逐项分析即可.【题目详解】A.∵x<y,∴x-1<y-1,故成立;B.∵x<y,∴,故成立;C.∵x<y,∴x+3<y+3,故成立;D.∵x<y,∴-2x>-2y,故不成立;故选D.故选:D.【题目点拨】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.10、C【解题分析】
利用二次根式的加减运算及立方根的定义,逐一分析四个选项的正误即可得出结论.【题目详解】解:A、>3>,∴选项A不正确;B、,∴选项B不正确;C、()2=2,∴选项C正确;D、=3,∴选项D不正确.故选C.【题目点拨】本题考查了立方根、算式平方根以及二次根式的加减,利用排除法逐一分析四个选项的正误是解题的关键.11、D【解题分析】
联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.【题目详解】解:联立,解得:,∵交点在第一象限,∴,解得:a>1.故选D.【题目点拨】本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键.12、C【解题分析】
根据分式的性质进行判断,去掉带有负号的括号,每一项都应变号;分子与分母同除以一个不为0的数,分式的值不变.【题目详解】A.=,故错误;B.=a+,故错误;C.+=-=0,故正确;D.﹣=,故错误;故选C【题目点拨】本题考查了分式的加减法则以及分式的基本性质,正确理解分式的基本性质是关键.二、填空题(每题4分,共24分)13、L【解题分析】
由前4分钟的进水量求得每分钟的进水量,后8分钟的进水量求得每分钟的出水量.【题目详解】前4分钟的每分钟的进水量为20÷4=5,每分钟的出水量为5-(30-20)÷8=.故答案为L.【题目点拨】从图象中获取信息,首先要明确两坐标轴的实际意义,抓住交点,起点,终点等关键点,明确函数图象的变化趋势,变化快慢的实际意义.14、x>-1.【解题分析】
先移项,再合并同类项,化系数为1即可.【题目详解】移项得,2x>-5+3,合并同类项得,2x>-2,化系数为1得,x>-1.故答案为:x>-1.【题目点拨】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.15、84°.【解题分析】
据正多边形的内角,可得∠ABE、∠E、∠CAB,根据四边形的内角和,可得答案.【题目详解】正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°﹣120°﹣120°﹣36°=84°,故答案为84°.【题目点拨】本题考查了多边形的内角与外角,利用求多边形的内角得出正五边形的内角、正六边形的内角是解题关键.16、【解题分析】
根据分母不等于0列式求解即可.【题目详解】由题意得,x−1≠0,解得x≠1.故答案为:≠1.【题目点拨】本题考查分式有意义的条件,熟练掌握分式的基本性质是解题关键.17、丙【解题分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【题目详解】甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是0.90,1.22,0.43,1.68,∴S2丙<S2甲<S2乙<S2丁,∴成绩最稳定的同学是丙.【题目点拨】本题考查方差的意义,方差越大,数据的波动越大;方差越小,数据波动越小,学生们熟练掌握即可.18、【解题分析】
先根据两直线平行的问题得到k=2,然后把(1,3)代入y=2x+b中求出b即可.【题目详解】∵直线y=kx+b与y=2x+1平行,∴k=2,把(1,3)代入y=2x+b得2+b=3,解得b=1,∴y=kx+b的表达式是y=2x+1.故答案为:y=2x+1.【题目点拨】此题考查一次函数中的直线位置关系,解题关键在于求k的值.三、解答题(共78分)19、见解析.【解题分析】
从H作HQ⊥AD于Q,从F作FP⊥AD于P,分别证明△ADC≌△QAH,△ABD≌△FAP得出FP=QH,证明△FMP≌△HMQ,得出FM=MH,从而得出结论.【题目详解】从H作HQ⊥AD于Q,从F作FP⊥AD于P,∵ACGH为正方形∴∠QAH+∠DAC=90°,AH=AC,∵AD为△ABC的高线∴∠ADC=90°,∠DAC+∠DCA=90°,∴∠QAH=∠DCA∵HQ⊥AD∵∠AQH=90°,∴∠AQH=∠ADC∵AH=AC,∠QAH=∠DCA,∠AQH=∠ADC∴△ADC≌△QAH∴QH=AD,同理可证,△ABD≌△FAP,∴FP=AD,∴QH=FP,又∵∠FPM=∠AQH=90°,∠FMP=∠QMH∴△FMP≌△HMQ,∴FM=MH,∴△ABC的高线AD所在直线平分线段FH【题目点拨】本题考查正方形的性质,三角形全等的判定和性质.要证明两条线段全等,如果这两条线段在同一个三角形中,常用等角对等边去证明;如果这两条线段不在同一三角形中,那么一般要证明它们所在的三角形全等,如果不存在这样的三角形,那么就要辅助线,构造全等三角形.20、解:(1)平均数是25人,众数是25人,中位数是26人;(2)1250人.【解题分析】
(1)根据平均、众数和中位数的概念分别求解即可;(2)用平均数乘以发车班次就是乘客的总人数.【题目详解】解:(1)平均数=(16+25+18+1+25+30+28+29+25+1)=25(人),这组数据按从小到大的顺序排列为:16,18,25,25,25,1,1,28,29,30,中位数为:;众数为:25;(2)50×25=1250(人);答:在高峰时段从总站乘该路车出行的乘客共有1250人.【题目点拨】本题考查了众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.21、(1);(2);(3),.【解题分析】
(1)与点重合则点E为(6,3)(2)作轴,证明:即则点E为(8,3)(3)分情况解答,在点右侧,过点作轴,证明:;在点左侧,点作轴,证明:【题目详解】解:(1)与点重合则点E再x轴的位置为2+4=6.(2)过点作轴,∵∠BAD=∠EMD=∠BDE=90°,∴∠BDA+∠ABD=∠BDA+∠MDE,∴∠ABD=∠MDE,∵BD=DE,,点在线段的中垂线上,.,..(3)①点在点右侧,如图,过点作轴,同(2)设,可得:,求得:,(舍去)②点在点左侧,如图,过点作轴,同上得设,可得:,,求得:,(舍去)综上所述:,【题目点拨】本题考查正方形的性质,解题关键在于分情况作出垂直线.22、(1)(-1,3);(2);(3)(-,0).【解题分析】
(1)把A、B的坐标代入函数解析式,求出函数解析式,即可求出D点的坐标;(2)根据面积公式求出面积即可;(3)找出P点的位置,求出直线EC的解析式,即可求出PD点的坐标.【题目详解】解:(1)把A(-3,0)代入y=x+m,得m=,∵直线y=-x+2与x轴、y轴分别交于B、C两点,∴B点坐标为(2,0),C(0,2),解方程组得:,∴D点坐标为(-1,3);故答案为(-1,3);(2)∵直线y=-x+2与x轴、y轴分别交于B、C两点,∴B点坐标为(2,0),C(0,2),∴四边形AOCD的面积=S△DAB-S△COB=×5×3-×2×2=;(3)作D关于x轴的对称点E,连接CE,交x轴于P,此时PD+PC的值最小,∵D点坐标为(-1,3),∴E点的坐标为(-1,-3),设直线CE的解析式为y=ax+b,把E、C的坐标代入得:解得:a=5,b=2,即直线CE的解析式为y=5x+2,当y=0时,x=-,即P点的坐标为(-,0).【题目点拨】本题考查了函数图象上点的坐标特征,轴对称-最短路线问题等知识点,能综合运用知识点进行计算是解此题的关键.23、(1)60,68;(2)小亮在甲组;(3)乙组的方差是116;乙组的方差小于甲组,选乙组同学代表学校参加复赛.【解题分析】
(1)根据中位数和平均数的计算公式分别进行解答即可求出a,b的值;
(2)根据中位数的意义进行判断即可;
(3)根据方差公式先求出乙组的方差,再根据方差的意义即可得出答案.【题目详解】解:(1)甲组的中位数a=(分);
乙组的平均数是:(50+60+60+60+70+70+70+70+80+90)÷10=68(分);故答案为:60,68;
(2)根据中位数判断,甲组中位数60分,乙组中位数70分,所以小亮是在甲组.(3)乙组的方差是:[(50-68)2+3×(60-68)2+4×(70-68)2+(80-68)2+(90-68)2]=116;∵乙组的方差小于甲组,
∴选乙组同学代表学校参加复赛.【题目点拨】本题考查了平均数、中位数及方差,熟练掌握平均数、中位数及方差的定义是解题的关键.24、(1)八年(1)班的平均数为24,八年(2)班的中位数为24,众数为21;(2)八年(1)成绩比较整齐.【解题分析】【分析】(1)分别根据平均数、中位数、众数的定义逐一进行求解即可得;(2)根据方差的公式分别计算两个班的方差进行比较即可得.【题目详解】(1)由图可知八年(1)班的成绩分别为24、21、27、24、21、27、21、24、27、24,所以八年(1)班的平均数分为(24+21+27+24+21+27+21+24+27+24)÷10=24分,八年(2)班的成绩从小到大排列为:15、21、21、21、24、24、27、27、30、30,八年(2)班的中位数为24,众数为21;(2),,∵<,∴八年(1)成绩比较整齐.【题目点拨】本题考查了平均数,中位数,众数,方差,首先是从图形中读出数据,关键是掌握平均数,中位数,众数的概念、熟记方差的公式.25、(1);(2);(3),2.【解题分析】
(1)原式利用多项式乘以多项式法则计算即可求出值;
(2)原式利用完全平方公式,以及平方差公式化简,去括号合并即可得到结果;
(3)原式利用平方差公式,多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【题目详解】解:(1);(2);(3)当,时,原式.故答案为:(1);(2);(3),2.【题目点拨】本题考查整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.26、(1)①证明见解析;②BE=2CF,BE⊥CF;(2)仍然有BE=2CF,BE⊥CF.【解题分析】
(1)①如图1,由AF=CF得到∠1=∠2,则利用等角的余角相等可得∠3=∠ADC,然后根据等腰三角形的判定定理得FD=FC,易得AF=FD;
②先利用等腰直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拆船业的可持续发展战略规划考核试卷
- 制鞋业市场产品差异化考核试卷
- 木材的电子与通讯应用考核试卷
- 福建省福州市福清市2024-2025学年六年级上学期期中英语试卷
- 企业知识产权培训方案
- 化学纤维在水利工程领域的应用考核试卷
- 煤矿安全管理与风险预控考核试卷
- 低温低价设备制造技术在铁合金冶炼中的应用考核试卷
- 城市交通管理的案例分析考核试卷
- 2025年中考语文备考之名著复习:《艾青诗选》题集组(答案)
- 2024年冬奥会知识竞赛题库及答案(共139题)
- -1.2数据信息与知识课件浙教版信息技术必修1
- 基于项目式学习的初中数学“综合与实践”教学研究
- 小学六年级上 生命生态安全 第10课《预防血吸虫病》课件
- GB/T 9799-2024金属及其他无机覆盖层钢铁上经过处理的锌电镀层
- 环保咨询服务合同范本
- 2022-2023学年北京西城区高一语文(下)期末考试卷附答案解析
- HG/T 6313-2024 化工园区智慧化评价导则(正式版)
- 湖北省武汉市部分学校2022-2023学年高一年级上册期中联考数学试题(学生版+解析)
- (高清版)JTGT 3331-07-2024 公路膨胀土路基设计与施工技术规范
- (正式版)JTT 1499-2024 公路水运工程临时用电技术规程
评论
0/150
提交评论