版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省烟台市招远市数学八年级第二学期期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列计算正确的是()A. B.C.=1 D.2.下列由一个正方形和两个相同的等腰直角三角形组成的图形中,为中心对称图形的是()A. B.C. D.3.函数的自变量满足≤≤2时,函数值y满足≤≤1,则这个函数肯定不是()A. B. C. D.4.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和5.若直角三角形两条直角边长分别为2,3,则该直角三角形斜边上的高为()A. B. C. D.6.△ABC的三边分别是a,b,c,其对角分别是∠A,∠B,∠C,下列条件不能判定△ABC是直角三角形的是()A.BACB.a:b:c5:12:13C.b2a2c2D.A:B:C3:4:57.解不等式,解题依据错误的是()解:①去分母,得5(x+2)<3(2x﹣1)②去括号,得5x+10<6x﹣3③移项,得5x﹣6x<﹣3﹣10④合并同类项,得﹣x<﹣13⑤系数化1,得x>13A.②去括号法则 B.③不等式的基本性质1C.④合并同类项法则 D.⑤不等式的基本性质28.下列命题中,假命题是()A.对角线互相平分的四边形是平行四边形B.对角线互相平分且相等的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相垂直且相等的四边形是正方形9.如果一个正多边形的内角和是这个正多边形外角和的2倍,那么这个正多边形是()A.等边三角形 B.正四边形 C.正六边形 D.正八边形10.如图,△ABC的周长为20,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=8,则MN的长度为()A. B.2 C. D.3二、填空题(每小题3分,共24分)11.如图,正方形CDEF内接于,,,则正方形的面积是________.12.如图所示,在▱ABCD中,对角线AC,BD交于点O,OE∥BC交CD于E,若OE=3cm,则AD的长为.13.若方程+2=的解是正数,则m的取值范围是___.14.如图,四边形ABCD、DEFG都是正方形,AB与CG交于点下列结论:;;;;其中正确的有______;15.如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,若正方形ABCD的边长为1,且∠BFC=90°,则AE的长为___16.学校团委会为了举办“庆祝五•四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有____人.17.如图,,请你再添加一个条件______,使得(填一个即可).18.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为.三、解答题(共66分)19.(10分)关于的方程,其中分别是的三边长.(1)若方程有两个相等的实数根,试判断的形状,并说明理由;(2)若为等边三角形,试求出这个方程的解.20.(6分)如图,利用一面墙(墙的长度不限),用20m长的篱笆围成一个面积为50m2矩形场地,求矩形的宽BC.21.(6分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠1.(1)若CE=1,求BC的长;(1)求证:AM=DF+ME.22.(8分)在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?23.(8分)(1)计算(2)计算.24.(8分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)求出本次接受调查的市民共有多少人?(2)扇形统计图中,扇形E的圆心角度数是_________;(3)请补全条形统计图;(4)若该市约有80万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.25.(10分)如图,在△ABC中,∠ACB=90°,且DE是△ABC的中位线.延长ED到F,使DF=ED,连接FC,FB.回答下列问题:(1)试说明四边形BECF是菱形.(2)当的大小满足什么条件时,菱形BECF是正方形?请回答并证明你的结论.26.(10分)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E,F.(1)若CE=8,CF=6,求OC的长.(2)连接AE,AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
根据二次根式的加减,二次根式的性质,二次根式的除法逐项计算即可.【题目详解】:A、与不是同类项,不能合并,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,正确.故选D.【题目点拨】本题考查了二次根式的运算与性质,熟练掌握二次根式的性质与运算法则是解答本题的关键.2、C【解题分析】
根据中心对称图形的定义:平面内,如果把一个图形绕某一点旋转180后能与原图形重合,这个图形就叫做中心对称图形,即可判断.【题目详解】解:根据中心对称图形的定义,A.不是中心对称图形;B.不是中心对称图形;C.是中心对称图形,它的对称中心是正方形对角线的交点;D.不是中心对称图形;故选C.【题目点拨】本题考查中心对称图形的识别,熟记中心对称图形的定义是解题的关键.3、A【解题分析】
把x=代入四个选项中的解析式可得y的值,再把x=2代入解析式可得y的值,然后可得答案.【题目详解】:A、把x=代入可得y=4,把x=2代入可得y=1,故A正确;B、把x=代入可得y=,把x=2代入可得y=1,故B错误;C、把x=代入可得y=,把x=2代入可得y=1,故C错误;D、把x=代入可得y=16,把x=2代入可得y=1,故D错误.故选A.【题目点拨】此题主要考查了反比例函数图象的性质,关键是正确理解题意,根据自变量的值求出对应的函数值.4、C【解题分析】
根据勾股定理得到c1=a1+b1,根据正方形的面积公式、长方形的面积公式计算即可.【题目详解】设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c1=a1+b1,阴影部分的面积=c1-b1-a(c-b)=a1-ac+ab=a(a+b-c),较小两个正方形重叠部分的长=a-(c-b),宽=a,则较小两个正方形重叠部分底面积=a(a+b-c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选C.【题目点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.5、C【解题分析】
己知两直角边长度,根据勾股定理即可求得斜边长,三角形面积计算既可以用直角边计算,又可以用斜边和斜边上的高计算,根据这个等量关系即可求斜边上的高.【题目详解】解:设该直角三角形斜边上的高为,直角三角形的两条直角边长分别为2和3,斜边,,,故选:C.【题目点拨】本题考查了勾股定理的灵活运用,根据面积相等的方法巧妙地计算斜边上的高是解本题的关键.6、D【解题分析】
根据三角形内角和定理判断A、D即可;根据勾股定理的逆定理判断B、C即可.【题目详解】A、∵∠B=∠A-∠C,∴∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC是直角三角形,故本选项错误;B、∵52+122=132,∴△ABC是直角三角形,故本选项错误;C、∵b2-a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故本选项正确;故选D.【题目点拨】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.7、D【解题分析】
根据题目中的解答步骤可以写出各步的依据,从而可以解答本题.【题目详解】解:由题目中的解答步骤可知,②去括号法则,故选项A正确,③不等式的基本性质1,故选项B正确,④合并同类项法则,故选项C正确,⑤不等式的基本性质3,故选项D错误,故选D.【题目点拨】本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法.8、D【解题分析】
根据平行四边形的判定方法可知A是真命题,根据矩形的判定方法可知B是真命题,根据菱形的判定方法可知C是真命题,根据对角线互相垂直平分且相等的四边形是正方形,可知D是假命题.【题目详解】A.对角线互相平分的四边形是平行四边形,是真命题;B.对角线互相平分且相等的四边形是矩形,是真命题;C.对角线互相垂直平分的四边形是菱形,是真命题;D.对角线互相垂直且相等的四边形是正方形,是假命题;故选D.【题目点拨】本题主要考查了命题与定理,解题时注意:对角线互相垂直平分且相等的四边形是正方形,对角线互相垂直且相等的四边形可能是等腰梯形或筝形.9、C【解题分析】
设这个多边形的边数为n.根据题意列出方程即可解决问题.【题目详解】设这个多边形的边数为n,由题意(n﹣2)•180°=2×360°,解得n=6,所以这个多边形是正六边形,故选C.【题目点拨】本题考查多边形的内角和、外角和等知识,解题的关键是学会构建方程解决问题.10、B【解题分析】
证明△BNA≌△BNE,得到BE=BA,AN=NE,同理得到CD=CA,AM=MD,求出DE,根据三角形中位线定理计算即可.【题目详解】解:在△BNA和△BNE中,,∴△BNA≌△BNE(ASA)∴BE=BA,AN=NE,同理,CD=CA,AM=MD,∴DE=BE+CD−BC=BA+CA−BC=20−8−8=4,∵AN=NE,AM=MD,∴MN=DE=2,故选:B.【题目点拨】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题(每小题3分,共24分)11、0.8【解题分析】
根据题意分析可得△ADE∽△EFB,进而可得2DE=BF,2AD=EF=DE,由勾股定理得,DE2+AD2=AE2,可解得DE,正方形的面积等于DE的平方问题得解.【题目详解】∵根据题意,易得△ADE∽△EFB,∴BE:AE=BF:DE=EF:AD=2:1,∴2DE=BF,2AD=EF=DE,由勾股定理得,DE+AD=AE,解得:DE=EF=,故正方形的面积是=,故答案为:0.8【题目点拨】本题考查相似三角形,熟练掌握相似三角形的判定及基本性质是解题关键.12、6cm.【解题分析】试题分析:由平行四边形ABCD中,对角线AC和BD交于点O,OE∥BC,可得OE是△ACD的中位线,根据三角形中位线的性质,即可求得AD的长.解:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∵OE∥BC,∴OE∥AD,∴OE是△ACD的中位线,∵OE=3cm,∴AD=2OE=2×3=6(cm).故答案为:6cm.【点评】此题考查了平行四边形的性质以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.13、m<3且m≠2.【解题分析】
分式方程去分母转化为整式方程,由分式方程的解为正数,确定出m的范围即可.【题目详解】去分母得:m+2(x﹣1)=x+1,解得:x=3﹣m,由分式方程的解为正数,得到3﹣m>0,且3﹣m≠1,解得:m<3且m≠2,故答案为:m<3且m≠2.【题目点拨】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14、
【解题分析】
根据正方形的性质可得,,,然后求出,再利用“边角边”证明和全等,根据全等三角形对应边相等可得,判定正确;根据全等三角形对应角相等可得,再求出,然后求出,判定正确;根据直角三角形斜边上的中线等于斜边的一半可得,判定正确;求出点D、E、G、M四点共圆,再根据同弧所对的圆周角相等可得,判定正确;得出,判定GE错误.【题目详解】四边形ABCD、DEFG都是正方形,,,,,即,在和中,,≌,,故正确;,,,,故正确;是正方形DEFG的对角线的交点,,,故正确;,点D、E、G、M四点共圆,,故正确;,,不成立,故错误;综上所述,正确的有.故答案为.【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,以及四点共圆,熟练掌握各性质是解题的关键.15、【解题分析】
延长EF交CB于M,连接DM,根据正方形的性质得到AD=DC,∠A=∠BCD=90°,由折叠的性质得到∠DFE=∠DFM=90°,通过Rt△DFM≌Rt△DCM,于是得到MF=MC.由等腰三角形的性质得到∠MFC=∠MCF由余角的性质得到∠MFC=∠MBF,于是求得MF=MB,根据勾股定理即可得到结论.【题目详解】如图,延长EF交CB于M,连接DM,∵四边形ABCD是正方形,∴AD=DC,∠A=∠BCD=90°,∵将△ADE沿直线DE对折得到△DEF,∴∠DFE=∠DFM=90°,在Rt△DFM与Rt△DCM中,,∴Rt△DFM≌Rt△DCM(HL),∴MF=MC,∴∠MFC=∠MCF,∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,∴∠MFB=∠MBF,∴MB=MC,∴MF=MC=BM=,设AE=EF=x,∵BE2+BM2=EM2,即(1-x)2+()2=(x+)2,解得:x=,∴AE=,故答案为:.【题目点拨】本题考查了翻折变换-折叠问题,正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.16、250【解题分析】
由扇形统计图可知,赞成举办郊游的学生占1-40%-35%=25%,根据赞成举办文艺演出的人数与对应的百分比可求出总人数,由此即可解决.【题目详解】400÷40%=1000(人),1000×(1-40%-35%)=1000×25%=250(人),故答案为250.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.17、(答案不唯一)【解题分析】
注意两个三角形有一个公共角∠A,再按照三角形全等的判定方法结合图形添加即可.【题目详解】解:∵∠A=∠A,AB=AC,∴若按照SAS可添加条件AD=AE;若按照AAS可添加条件∠ADB=∠AEC;若按照ASA可添加条件∠B=∠C;故答案为AD=AE或∠ADB=∠AEC或∠B=∠C.【题目点拨】本题考查了全等三角形的判定方法,熟练掌握判定三角形全等的各种方法是解决此类问题的关键.18、2.5【解题分析】试题分析:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,DE=DM∠EDF=∠FDM∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM﹣MF=BM﹣EF=4﹣x,∵EB=AB﹣AE=3﹣1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=52,∴FM=5考点:1.旋转的性质;2.全等三角形的判定与性质;3.正方形的性质.三、解答题(共66分)19、(1)是直角三角形;理由见解析;(2),.【解题分析】
(1)根据根的判别式为0,计算出的关系,即可判定;(2)根据题意,将方程进行转化形式,即可得解.【题目详解】(1)直角三角形根据题意,得即所以是直角三角形(2)根据题意,可得解出【题目点拨】此题主要考查一元二次方程和三角形的综合应用,熟练运用,即可解题.20、5m【解题分析】
设矩形的宽BC=xm.根据面积列出方程求解可得.【题目详解】解:设矩形的宽BC=xm.则AB=(20-2x)m,根据题意得:x(20-2x)=50,解得:,答:矩形的宽为5m.【题目点拨】此题考查了一元二次方程的应用,列方程时要找到题目中的等量关系,所求得的解要符合实际情况.21、(1)1;(1)见解析.【解题分析】试题分析:(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;
(1)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.试题解析:(1)∵四边形ABCD是菱形,
∴AB∥CD,
∴∠1=∠ACD,
∵∠1=∠1,
∴∠ACD=∠1,
∴MC=MD,
∵ME⊥CD,
∴CD=1CE,
∵CE=1,
∴CD=1,
∴BC=CD=1;
(1)AM=DF+ME证明:如图,∵F为边BC的中点,
∴BF=CF=BC,
∴CF=CE,
在菱形ABCD中,AC平分∠BCD,
∴∠ACB=∠ACD,
在△CEM和△CFM中,
∵,
∴△CEM≌△CFM(SAS),
∴ME=MF,
延长AB交DF的延长线于点G,
∵AB∥CD,
∴∠G=∠1,
∵∠1=∠1,
∴∠1=∠G,
∴AM=MG,
在△CDF和△BGF中,
∵∴△CDF≌△BGF(AAS),
∴GF=DF,
由图形可知,GM=GF+MF,
∴AM=DF+ME.22、(1)2元;(2)至少购进玫瑰200枝.【解题分析】试题分析:(1)设降价后每枝玫瑰的售价是x元,然后根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,列分式方程求解即可,注意检验结果;(2)根据店主用不多于900元的资金再次购进两种鲜花共500枝,列不等式求解即可.试题解析:(1)设降价后每枝玫瑰的售价是x元,依题意有=×1.5.解得x=2.经检验,x=2是原方程的解,且符合题意.答:降价后每枝玫瑰的售价是2元.(2)设购进玫瑰y枝,依题意有2(500-y)+1.5y≤900.解得y≥200.答:至少购进玫瑰200枝.23、(1)(2)1【解题分析】
(1)先进行分母有理化,然后进行加减运算.(2)根据乘法分配律及二次根式的性质即可求解.【题目详解】(1)====(2)=+=3+9=1.【题目点拨】本题考查了二次根式的混合运算,熟练运用二次根式混合运算法则是解题的关键.24、(1)2000(2)(3)500(4)32万【解题分析】
(1)由A组人数及其所占百分比可得总人数;(2)用360°乘以对应比例即可得;(3)用总人数乘以D所占百分比即可;(4)利用样本估计总体思想求解可得.【题目详解】(1)本次接受调查的市民共有:(人);(2)扇形E角的度数为:(3)D选项的人数为:补全条形统计图(4)估计赞同“选育无絮杨品种,并推广种植”的人数为(万人)故估
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024中介服务项目协议
- 2024适用房产中介购房协议格式范本
- 2024年期建筑工人劳务承揽协议
- 2024年专利技术许可格式协议
- 2024年化玉米购销协议模板
- 2024届安徽省安庆二中、天成中学高中数学试题竞赛模拟(二)试题
- 2023-2024学年浙江省镇海中学高三高考冲刺第一次考试数学试题
- 2024年安全烟花爆竹零售协议样本
- 2024年材料采购协议典范
- 2024年度商品采购协议样式
- 第四代住宅百科知识讲座
- 浙江大学沈志坤法律知识讲座
- 亚马逊账户安全培训试题
- 《饭店服务心理学》课程教案
- 政务短视频运营方案书
- 电厂消防安全知识讲座
- 护士团队的协作和领导力培养培训课件
- 国有资产委托经营管理协议
- 2024年陕煤集团招聘笔试参考题库含答案解析
- 冬季防溺水安全课件
- vsd负压吸引术护理查房
评论
0/150
提交评论