版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省靖江市实验学校八年级数学第二学期期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.菱形的对角线相等2.计算的结果等于()A. B. C. D.3.下面的平面图形中,不能镶嵌平面的图形是()A.正三角形 B.正六边形 C.正四边形 D.正五边形4.下列各组数中,不能作为直角三角形的三边长的是()A.1.5,2,3 B.6,8,10 C.5,12,13 D.15,20,255.下列有理式中,是分式的为()A. B. C. D.6.如图是自动测温仪记录的图象,它反映了武汉的冬季某天气温随时间的变化而变化的情况,下列说法错误的是()A.这一天凌晨4时气温最低B.这一天14时气温最高C.从4时至14时气温呈上升状态(即气温随时间增长而上升)D.这一天气温呈先上升后下降的趋势7.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形8.张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点5分、7点15分离家骑自行车上班,刚好在校门口相遇,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是米/分,则可列得方程为()A. B. C. D.9.下列汉字或字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.10.用科学记数法表示,结果为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.12.如图,正方形ABCD的面积为,则图中阴影部分的面积为______________.13.已知一元二次方程x2-6x+a=0有一个根为2,则另一根为_______.14.若,则的值为______.15.已知m是一元二次方程的一个根,则代数式的值是_____16.分解因式:2x2﹣8=_____________17.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为_____.18.若正比例函数的图象过点和点,当时,,则的取值范围为__________.三、解答题(共66分)19.(10分)已知一次函数,当时,,求它的解析式以及该直线与坐标轴的交点坐标.20.(6分)如图,G是线段AB上一点,AC和DG相交于点E.(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.21.(6分)如图,在平行四边形中,,于点,试求的度数.22.(8分)四边形ABCD是正方形,AC是对角线,E是平面内一点,且,过点C作,且.连接AE、AF,M是AF的中点,作射线DM交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①;②;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求与的和的度数.23.(8分)几何学的产生,源于人们对土地面积测量的需要,以面积早就成为人们认识图形性质与几何证明的有效工具,可以说几何学从一开始便与面积结下了不解之缘.我们已经掌握了平行四边形面积的求法,但是一般四边形的面积往往不易求得,那么我们能否将其转化为平行四边形来求呢?(1)方法1:如图①,连接四边形的对角线,,分别过四边形的四个顶点作对角线的平行线,所作四条线相交形成四边形,易证四边形是平行四边形.请直接写出S四边形ABCD和之间的关系:_______________.方法2:如图②,取四边形四边的中点,,,,连接,,,,(2)求证:四边形是平行四边形;(3)请直接写出S四边形ABCD与之间的关系:_____________.方法3:如图③,取四边形四边的中点,,,,连接,交于点.先将四边形绕点旋转得到四边形,易得点,,在同一直线上;再将四边形绕点旋转得到四边形,易得点,,在同一直线上;最后将四边形沿方向平移,使点与点重合,得到四边形;(4)由旋转、平移可得_________,_________,所以,所以点,,在同一直线上,同理,点,,也在同一点线上,所以我们拼接成的图形是一个四边形.(5)求证:四边形是平行四边形.(注意:请考生在下面2题中任选一题作答如果多做,则按所做的第一题计分)(6)应用1:如图④,在四边形中,对角线与交于点,,,,则S四边形ABCD=.(7)应用2:如图⑤,在四边形中,点,,,分别是,,,的中点,连接,交于点,,,,则S四边形ABCD=___________24.(8分)如图,在▱ABCD中,E是CD的中点,连接AE并延长交BC的延长线于点F.(1)求证:AE=FE;(2)若AB=2BC,∠F=35∘,求∠DAE25.(10分)化简代数式:,并求当x=2012时,代数式的值.26.(10分)某校学生会向全校名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图中的值是.(2)补全图2的统计图.(3)求本次调查获取的样本数据的平均数、众数和中位数;(4)根据样本数据,估计该校本次活动捐款金额为元的学生人数.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】分析:根据平行四边形、矩形、菱形的性质分别判断得出即可.详解:A.根据平行四边形的性质,平行四边形的对角线互相平分不相等,故此选项错误;B.根据矩形的性质,矩形的对角线相等,不互相垂直,故此选项错误;C.根据菱形的性质,菱形的对角线互相垂直且平分,故此选项正确;D.根据菱形的性质,菱形的对角线互相垂直且平分但不相等,故此选项错误.故选C.点睛:本题主要考查平行四边形、矩形、菱形的性质,熟练掌握相关定理是解题的关键.2、D【解题分析】
利用乘法法则计算即可求出值【题目详解】解:原式=-54,
故选D.【题目点拨】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.3、D【解题分析】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【题目详解】A、正三角形的每一个内角都是60°,放在同一顶点处6个即能镶嵌平面;B、正六边形每个内角是120°,能整除360°,故能镶嵌平面;C、正四边形的每个内角都是90°,放在同一顶点处4个即能镶嵌平面;D、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能镶嵌平面,故选D.【题目点拨】本题考查了平面镶嵌(密铺),用一般凸多边形镶嵌,用任意的同一种三角形或四边形能镶嵌成一个平面图案.因为三角形内角和为180°,用6个同一种三角形就可以在同一顶点镶嵌,而四边形的内角和为360°,用4个同一种四边形就可以在同一顶点处镶嵌.用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.4、A【解题分析】
只要验证两小边的平方和是否等于最长边的平方即可判断三角形是不是直角三角形,据此进行判断.【题目详解】解:A、(1.5)2+22≠32,不能构成直角三角形,故本选项符合题意;B、62+82=100=102,能构成直角三角形,故本选项不符合题意;C、52+122=169=132,能构成直角三角形,故本选项不符合题意;D、152+202=252,能构成直角三角形,故本选项符合题意;故选A.【题目点拨】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.5、D【解题分析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】解:、、的分母中均不含有字母,因此它们是整式,而不是分式.分母中含有字母,因此是分式.故选:D【题目点拨】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.6、D【解题分析】
根据气温变化图,分析变化趋势和具体数值,即可求出答案.【题目详解】解:A.这一天凌晨4时气温最低为-3℃,故本选项正确;B.这一天14时气温最高为8℃,故本选项正确;C.从4时至14时气温呈上升状态,故本选项正确;D.这一天气温呈先下降,再上升,最后下降的趋势,故本选项错误;故选:D.【题目点拨】本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.7、B【解题分析】【分析】根据菱形的性质逐项进行判断即可得答案.【题目详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【题目点拨】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.8、A【解题分析】
设张老师骑自行车的速度是x米/分,则李老师骑自行车的速度是1.2x米/分,根据题意可得等量关系:张老师行驶的路程3000÷他的速度-李老师行驶的路程3000÷他的速度=10分钟,根据等量关系列出方程即可.【题目详解】设张老师骑自行车的速度是x米/分,由题意得:,故选:A.【题目点拨】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,表示出李老师和张老师各行驶3000米所用的时间,根据时间关系列出方程.9、C【解题分析】试题分析:A.是轴对称图形,不是中心对称图形.故错误;B.是轴对称图形,不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C.考点:1.中心对称图形;2.轴对称图形.10、B【解题分析】
小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】﹣0.0000014=﹣1.4×10﹣1.故选B.【题目点拨】本题考查了用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.二、填空题(每小题3分,共24分)11、1.1【解题分析】
连接DF,由勾股定理求出AB=1,由等腰三角形的性质得出∠CAF=∠DAF,由SAS证明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【题目详解】连接DF,如图所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=1,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.1;∴CF=1.1;故答案为1.1.【题目点拨】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质,证明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解决问题的关键.12、【解题分析】试题分析:根据正方形的对称性,可知阴影部分的面积为正方形面积的一半,因此可知阴影部分的面积为.13、1【解题分析】
设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.【题目详解】设方程另一根为t,
根据题意得2+t=6,
解得t=1.
故答案为1.【题目点拨】此题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握方程的两根为x1,x2,则x1+x2=-.14、.【解题分析】
由可得,化简即可得到,再计算,即可求得=.【题目详解】∵,∴,∴,∴,∴=.故答案为:.【题目点拨】本题考查了完全平方公式的变形应用,正确求得是解决问题的关键.15、.【解题分析】
把代入方程,得出关于的一元二次方程,再整体代入.【题目详解】当时,方程为,即,所以,.故答案为:.【题目点拨】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了整体代入的思想.16、2(x+2)(x﹣2)【解题分析】
先提公因式,再运用平方差公式.【题目详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【题目点拨】考核知识点:因式分解.掌握基本方法是关键.17、2【解题分析】
先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.【题目详解】因为,△ABC中,∠C=90°,∠A=30°,所以,,因为,DE是中位线,所以,.故答案为2【题目点拨】本题考核知识点:直角三角形,三角形中位线.解题关键点:熟记直角三角形性质,三角形中位线性质.18、【解题分析】
根据点A和点B的坐标关系即可求出正比例函数的增减性,然后根据增减性与比例系数的关系列出不等式,即可求出m的取值范围.【题目详解】解:∵正比例函数的图象过点和点,且时,,∴该正比例函数y随x的增大而减小∴解得:故答案为:【题目点拨】此题考查的是正比例函数的增减性,掌握正比例函数的增减性与比例系数的关系是解决此题的关键.三、解答题(共66分)19、该直线与x轴交点的坐标是(1,0),与y轴的交点坐标是(0,-1).【解题分析】
把x、y的值代入y=kx-1,通过解方程求出k的值得到一次函数的解析式,根据直线与x轴相交时,函数的y值为0,与y轴相交时,函数的x值为0求出该直线与坐标轴的交点坐标.【题目详解】解:∵一次函数y=kx-1,当x=2时,y=-2,
∴-2=2k-1,解得k=1,
∴一次函数的解析式为y=x-1.
∵当y=0时,x=1;
当x=0时,y=-1,
∴该直线与x轴交点的坐标是(1,0),与y轴的交点坐标是(0,-1).【题目点拨】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征.正确求出直线的解析式是解题的关键.20、(1)见解析;(2)见解析.【解题分析】
(1)根据角平分线的作图方法作图即可;(2)由题意易证△ADE≌△CBF推出DE=BF.【题目详解】(1)解:以B为圆心、适当长为半径画弧,交AB、BC于M、N两点,分别以M、N为圆心、大于MN长为半径画弧,两弧相交于点P,过B、P作射线BF交AC于F.(2)证明如下:∵AD∥BC,∴∠DAC=∠C.∵BF平分∠ABC,∴∠ABC=2∠FBC,又∵∠ABC=2∠ADG,∴∠D=∠FBC,在△ADE与△CBF中,,∴△ADE≌△CBF(ASA),∴DE=BF.【题目点拨】本题考查的是全等三角形的判定定理以及基本作图的有关知识,难度一般.21、.【解题分析】
由BD=CD可得∠DBC=∠C=70°,由平行四边形的性质可得AD∥BC,从而有∠ADB=∠DBC=70°,继而在直角△AED中,根据直角三角形两锐角互余即可求得答案.【题目详解】,,在中,,,于点,,.【题目点拨】本题考查了平行四边形的性质,等边对等角,直角三角形两锐角互余等知,熟练掌握相关知识是解题的关键.22、(1)①见解析;②见解析;(2)【解题分析】
(1)根据已知及正方形的性质,全等三角形的判定,全等三角形的性质的计算,可知①∠BAE=∠DAF是否成立;可知②DN⊥AE是否成立;(2)根据已知及正方形的性质,全等三角形的判定,全等三角形的性质的计算,求出∠EAC与∠ADN的和的度数.【题目详解】(1)证明:①在正方形ABCD中,∴,.∵,∴.∴.∴.②∵M是AF的中点,∴,由①可知.∵.∵∴∴(2)解:延长AD至H,使得,连结FH,CH.∵,∴.在正方形ABCD屮,AC是对角线,∴.∴.∴.∴又∵,∴.∴∵M是AF的中点,D是AH的中点,∴.∴∴【题目点拨】本题主要考查了正方形的性质,全等三角形的判定,全等三角形的性质的应用,解题的关键是熟练掌握正方形的性质,全等三角形的判定,全等三角形的性质的计算.23、(1)S四边形ABCD;(2)见详解;(1)S四边形ABCD;(4)AEO,OEB;(5)见详解;(6);(7)【解题分析】
(1)先证四边形AEBO,四边形BFCO,四边形CGDO,四边形DHAO都是平行四边形,可得S△ABO=S四边形AEBO,S△BCO=S四边形BFCO,S△CDO=S四边形CGDO,SADO=S四边形DHAO,即可得出结论;(2)证明,和,,即可得出结论;(1)由,可得S四边形MNHE=S△ABD,S四边形MNGF=S△CBD,即可得出结论;(4)有旋转的定义即可得出结论;(5)先证,得到,再证,即可得出结论;(6)应用方法1,过点H作HM⊥EF与点M,再计算即可得出答案;(7)应用方法1,过点O作OM⊥IK与点M,再计算即可得出答案.【题目详解】解:方法一:如图,∵EF∥AC∥HD,EH∥DB∥FG,∴四边形AEBO,四边形BFCO,四边形CGDO,四边形DHAO都是平行四边形,∴S△ABO=S四边形AEBO,S△BCO=S四边形BFCO,S△CDO=S四边形CGDO,SADO=S四边形DHAO,∴.故答案为.方法二:如图,连接.(1),分别为,中点..,分别为,中点.,四边形为平行四边形(2),分别为,中点..∴S四边形MNHE=S△ABD,S四边形MNGF=S△CBD,∴故答案为.方法1.(1)有旋转可知;.故答案为∠AEO;∠OEB.(2)证明:有旋转知..旋转.四边形为平行四边形应用1:如图,应用方法1,过点H作HM⊥EF与点M,∵,∴∠AEM=60°,∠EHM=10°,∵,,∴EM=1,EH=6,EF=8,∴HM==,∴=EF·HM=24∴=,故答案为.应用2:如图,应用方法1,过点O作OM⊥IK与点M,,∵,∴∠MIO=60°,∠IOM=10°,∵,,∴IM=1,OI=6,IK=8,∴OM==,∴=KI·OM=24∴S四边形ABCD=,故答案为.【题目点拨】此题主要考查了平行四边形的判定与性质,旋转,三角形的中位线,三角形和平行四边形的面积,选择合适的方法来求面积是解决问题的关键.24、(1)详见解析;(2)35°.【解题分析】
(1)欲证明AE=FE,只要证明△ADE≌△FCE(AAS)即可.(2)根据∠DAE=∠BAD-∠FAB,只要求出∠BAD,∠FAB即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高考物理一轮复习专题14恒定电流1知识点讲解含解析
- 七年级美术下册5手绘校园风景教学设计浙美版
- 七年级英语上册StarterUnit1Goodmorning练习新版人教新目标版
- 2025版高考物理一轮复习课后集训24带电粒子在复合场中的运动含解析
- 2025届高考生物二轮复习大板块练生命活动的调节含解析
- 2023届新高考新教材化学鲁科版一轮学案-第7章第23讲 化学反应的限度
- 玉溪师范学院《儿童文学》2022-2023学年第一学期期末试卷
- 玉溪师范学院《地图设计与编绘》2022-2023学年第一学期期末试卷
- 盐城师范学院《中学思想政治教学论》2021-2022学年第一学期期末试卷
- 玉溪师范学院《教育知识与能力》2021-2022学年第一学期期末试卷
- 数独题目高级50题(后附答案)【最新】
- (完整word版)上海博物馆文物术语中英文对照
- 问题线索办理呈批表
- 调度自动化及通信技术监督实施细则
- 学、练、评一体化课堂模式下赛的两个问题与对策
- 陕西省尾矿资源综合利用
- 扣件式钢管脚手架施工方案(课程设计,含计算书)
- 磁悬浮列车(课堂PPT)
- 常见药品配伍表
- 克劳斯玛菲注塑机说明书(精华版)
- 柴油发电机组检测报告样本
评论
0/150
提交评论