




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市金牛区蜀西实验学校2024届八年级数学第二学期期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列对一次函数y=﹣2x+1的描述错误的是()A.y随x的增大而减小B.图象经过第二、三、四象限C.图象与直线y=2x相交D.图象可由直线y=﹣2x向上平移1个单位得到2.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁3.某地区连续10天的最高气温统计如下表,则该地区这10天最高气温的中位数是()最高气温()1819202122天数12232A. B. C. D.4.在某校举行的“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.众数 B.方差 C.中位数 D.平均数5.已知正比例函数的图象经过点(1,-2),则正比例函数的解析式为()A. B. C. D.6.已知一次函数y=(k﹣2)x+k+1的图象不过第三象限,则k的取值范围是()A.k>2 B.k<2 C.﹣1≤k≤2 D.﹣1≤k<27.不能判定四边形ABCD为平行四边形的题设是()A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠D C.AB=AD,BC=CD D.AB=CD,AD=BC8.用正三角形和正六边形镶嵌,若每一个顶点周围有m个正三角形、n个正六边形,则m,n满足的关系式是()A.2m+3n=12 B.m+n=8 C.2m+n=6 D.m+2n=69.若分式有意义,则x的取值范围是()A.x=1 B.x≠1 C.x>1 D.x<110.如图,要测量被池塘隔开的A、C两点间的距离,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得EF两点间距离等于23米,则A、C两点间的距离为()米A.23 B.46 C.50 D.2二、填空题(每小题3分,共24分)11.菱形的两条对角线长分别为10cm和24cm,则该菱形的面积是_________;12.如图,一次函数y=ax+b的图象经过A(0,1)和B(2,0)两点,则关于x的不等式ax+b<1的解集是_____.13.如图,菱形ABCD的对角线长分别为a、b,以菱形ABCD各边的中点为顶点作矩形,然后再以矩形的中点为顶点作菱形,……,如此下去,得到四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为___.14.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,如果AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,那么DP:DC等于_____.15.如图,正方形ABCD的边长为10,点A的坐标为(-8,0),点B在y轴上.若反比例函数y=kx的图像经过点C,则k的值为16.小明对自己上学路线的长度进行了20次测量,得到20个数据x1,x2,…,x20,已知x1+x2+…+x20=2019,当代数式(x﹣x1)2+(x﹣x2)2+…+(x﹣x20)2取得最小值时,x的值为___________.17.如图,正方形ABCD的边长为a,E是AB的中点,CF平分∠DCE,交AD于F,则AF的长为______.
18.若一个直角三角形的其中两条边长分别为6和8,则第三边长为_____.三、解答题(共66分)19.(10分)如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.20.(6分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?21.(6分)如图,菱形纸片的边长为翻折使点两点重合在对角线上一点分别是折痕.设.(1)证明:;(2)当时,六边形周长的值是否会发生改变,请说明理由;(3)当时,六边形的面积可能等于吗?如果能,求此时的值;如果不能,请说明理由.22.(8分)已知:在平行四边形ABCD中,AM=CN.求证:四边形MBND是平行四边形.23.(8分)如图,在矩形ABCD中,E是AB的中点,连接DE、CE.(1)求证:△ADE≌△BCE;(2)若AB=6,AD=4,求△CDE的周长.24.(8分)如图,中,,,.动点、均从顶点同时出发,点在边上运动,点在边上运动.已知点的运动速度是.当运动停止时,由,,构成的三角形恰好与相似.(1)试求点的运动速度;(2)求出此时、两点间的距离.25.(10分)解不等式组:,并把不等式组的解集在数轴上表示出来.26.(10分)解分式方程:﹣1=.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】分析:根据一次函数的性质,通过判断k和b的符号来判断函数所过的象限及函数与x轴y轴的交点.详解:在y=﹣2x+1中,∵k=﹣2<0,∴y随x的增大而减小;∵b=1>0,∴函数与y轴相交于正半轴,∴可知函数过第一、二、四象限;∵k=﹣2≠2,∴图象与直线y=2x相交,直线y=﹣2x向上平移1个单位,得到函数解析式为y=﹣2x+1.故选B.点睛:本题考查了一次函数的性质,知道系数和图形的关系式解题的关键.2、A【解题分析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.【题目详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A.【题目点拨】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.3、B【解题分析】
求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【题目详解】把这些数从小到大为:18℃,19℃,19℃,20℃,20℃,21℃,21℃,21℃,22℃,22℃,
则中位数是:=20.5℃;
故选B.【题目点拨】考查中位数问题,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.4、C【解题分析】
由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义解答即可.【题目详解】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从大到小排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了;故选:C.【题目点拨】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5、B【解题分析】
利用待定系数法把(1,-2)代入正比例函数y=kx中计算出k即可得到解析式.【题目详解】根据点在直线上,点的坐标满足方程的关系,将(1,-2)代入,得:,∴正比例函数的解析式为.故选B.6、D【解题分析】
若函数y=kx+b的图象不过第三象限,则此函数的k<1,b≥1,据此求解.【题目详解】解:∵一次函数y=(k﹣2)x+k+1的图象不过第三象限,∴k﹣2<1,k+1≥1解得:﹣1≤k<2,故选:D.【题目点拨】本题考查一次函数的图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数是大于1或是小于1.7、C【解题分析】
A.
∵AB=CD,AB∥CD,∴四边形ABCD为平行四边形(一组对边平行且相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;B.
∵∠A=∠C,∠B=∠D,∴四边形ABCD为平行四边形(两组对角分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;C.由AB=AD,BC=CD,不能判定四边形ABCD为平行四边形;D.
∵AB=CD,AD=BC,∴四边形ABCD为平行四边形(两组对边分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形故选C.【题目点拨】本题考查平行四边形的判定.8、D【解题分析】
正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为310°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【题目详解】正多边形的平面镶嵌,每一个顶点处的几个角之和应为310度,而正三角形和正六边形内角分别为10°、120°,根据题意可知10°×m+120°×n=310°,化简得到m+2n=1.故选D.【题目点拨】本题考查了平面镶嵌的条件,熟练掌握在每一个顶点处的几个角的和为310度是解题的关键.9、B【解题分析】
根据分式有意义的条件即可求出答案.【题目详解】由分式有意义的条件可知:x-1≠0,∴x≠1,故选:B.【题目点拨】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.10、B【解题分析】
先判断出EF是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AC=2EF.【题目详解】解:∵点E、F分别是BA和BC的中点,∴EF是△ABC的中位线,∴AC=2EF=2×23=46米.故选:B.【题目点拨】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键.二、填空题(每小题3分,共24分)11、110cm1.【解题分析】试题解析:S=×10×14=110cm1.考点:菱形的性质.12、x>1【解题分析】
观察函数图象,写出在y轴右侧的自变量的取值范围即可.【题目详解】当x>1时,ax+b<1,即不等式ax+b<1的解集为x>1.故答案为:x>1【题目点拨】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13、【解题分析】
根据三角形中位线定理,逐步得到小长方形的面积,得到规律即可求解.【题目详解】∵菱形ABCD的对角线长分别为a、b,AC⊥BD,∴S四边形ABCD=∵以菱形ABCD各边的中点为顶点作矩形,根据中位线的性质可知S四边形A1B1C1D1=S四边形ABCD=…则S四边形AnBnCnDn=S四边形ABCD=故四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为.故填:.【题目点拨】此题主要考查特殊平行四边形的性质,解题的关键是根据题意找到规律进行求解.14、【解题分析】
连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据平行四边形的性质得到AD∥BC,根据平行线的性质得到∠CBN=∠DAB=60°,根据勾股定理得到AF=,根据三角形和平行四边形的面积公式即可得到结论.【题目详解】连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠DAB=60°,∴∠CBN=∠DAB=60°,∴∠BFN=∠MCB=30°,∵AB:BC=3:2,∴设AB=3a,BC=2a,∴CD=3a,∵AE:EB=1:2,F是BC的中点,∴BF=a,BE=2a,∵∠FNB=∠CMB=90°,∠BFN=∠BCM=30°,∴BM=BC=a,BN=BF=a,FN=a,CM=a,∴AF=,∵F是BC的中点,∴S△DFA=S平行四边形ABCD,即AF×DP=CD×CM,∴PD=,∴DP:DC=.故答案为:.【题目点拨】本题考查了平行四边形的性质,平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,正确的作出辅助线是解题的关键.15、1【解题分析】
过点C作CE⊥y轴于E,根据正方形的性质可得AB=BC,∠ABC=90°,再根据同角的余角相等求出∠OAB=∠CBE,然后利用“角角边”证明ΔABO和ΔBCE全等,根据全等三角形对应边相等可得OA=BE=8,CE=OB=6,再求出OE,然后写出点C的坐标,再把点C的坐标代入反比例函数解析式计算即可求出k的值.【题目详解】解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(-8,0),∴OA=8,∵AB=10,∴OB=10在ΔABO和ΔBCE中,∠OAB=∠CBE∠AOB=∠BEC∴ΔABO≅ΔBCE(AAS),∴OA=BE=8,CE=OB=6,∴OE=BE-OB=8-6=2,∴点C的坐标为(6,2),∵反比例函数y=kx(k≠0)∴k=xy=2×6=12,故答案为1.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点C的坐标是解题的关键.16、100.1【解题分析】
先设出y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2,然后进行整理得出y=20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),再求出二次函数的最小值即可.【题目详解】解:设y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2
=x2-2xx1+x12+x2-2xx2+x22+x2-2xx3+x32+…+x2-2xx20+x202
=20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),
=20x2-2×2019x+(x12+x22+x32+…+x202),
则当x=时,(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值,
即当x=100.1时,(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值.
故答案为100.1.【题目点拨】此题考查了二次函数的性质,关键是设y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2,整理出一个二次函数.17、a【解题分析】
找出正方形面积等于正方形内所有三角形面积的和求这个等量关系,列出方程求解,求得DF,根据AF=a-DF即可求得AF.【题目详解】作FH⊥CE,连接EF,
∵∠FHC=∠D=90°,∠HCF=∠DCF,CF=CF
∴△CHF≌△CDF,
又∵S正方形ABCD=S△CBE+S△CDF+S△AEF+S△CEF,
设DF=x,则a2=CE•FH
∵FH=DF,CE=,
∴整理上式得:2a-x=x,
计算得:x=a.
AF=a-x=a.
故答案为a.【题目点拨】本题考查了转换思想,考查了全等三角形的证明,求AF,转化为求DF是解题的关键.18、10或2【解题分析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【题目详解】设第三边为x,(1)若8是直角边,则第三边x是斜边,由勾股定理得,62+82=x2解得:x=10,(2)若8是斜边,则第三边x为直角边,由勾股定理得,62+x2=82,解得.故第三边长为10或.故答案为:10或.【题目点拨】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.三、解答题(共66分)19、24m2【解题分析】
连接AC,利用勾股定理逆定理可以得出△ABC是直角三角形,用△ABC的面积减去△ACD的面积就是所求的面积.【题目详解】连接AC,∵∠ADC=90°∴在Rt△ADC中,AC2=AD2+CD2=42+32=25,∵AC2+BC2=25+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∴S=S△ACB-S△ADC=×12×5-×4×3=24m2答:这块地的面积是24平方米考点:1.勾股定理的逆定理2.勾股定理20、(1)每件甲种商品价格为70元,每件乙种商品价格为60元;(2)该商店最多可以购进20件甲种商品【解题分析】
(1)分别设出甲、乙两种商品的价格,根据“用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同”列出方程,解方程即可得出答案;(2)分别设出购进甲、乙两种商品的件数,根据“投入的经费不超过3200元”列出不等式,解不等式即可得出答案.【题目详解】解:(1)设每件乙种商品价格为元,则每件甲种商品价格为()元,根据题意得:解得:.经检验,是原方程的解,则.答:每件甲种商品价格为元,每件乙种商品价格为元.(2)设购进甲种商品件,则购进乙种商品()件,根据题意得:,解得:.该商店最多可以购进件甲种商品.【题目点拨】本题考查的是分式方程在实际生活中的应用,认真审题,根据题意列出方程和不等式是解决本题的关键.21、(1)见解析;(2)不变,见解析;(3)能,或【解题分析】
(1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论;
(2)由菱形的性质得到BE=BF,AE=FC,推出△ABC是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;
(3)记AC与BD交于点O,得到∠ABD=30°,解直角三角形得到AO=1,BO=,求得S四边形ABCD=2,当六边形AEFCHG的面积等于时,得到S△BEF+S△DGH=,设GH与BD交于点M,求得GM=x,根据三角形的面积列方程即可得到结论.【题目详解】解:折叠后落在上,平分,四边形为菱形,同理四边形为菱形,四边形为平行四边形,.不变.理由如下:由得四边形为菱形,为等边三角,为定值.记与交于点.当六边形的面积为时,由得记与交于点,同理即化简得解得,∴当或时,六边形的面积为.【题目点拨】此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x表示出相关的线段,是一道基础题目.22、证明见解析.【解题分析】
可通过证明DM∥BN,DM=BN来说明四边形是平行四边形,也可通过DM=BN,BM=DN来说明四边形是平行四边形.【题目详解】(法一)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB.∵AM=CN,∴AD﹣AM=CB﹣CN,即DM=BN.又∵DM∥BN,∴四边形MBND是平行四边形.(法二)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△AMN和△CND中,又∵,∴△AMN≌△CND,∴BM=DN.∵AM=CN,∴AD﹣AM=CB﹣CN,即DM=BN.又∵BM=DN,∴四边形MBND是平行四边形.点睛:本题考查了平行四边形的性质和判定,题目难度不大.23、(1)证明见解析;(2)1.【解题分析】
(1)由全等三角形的判定定理SAS即可证得结论;(2)由(1)中全等三角形的对应边相等和勾股定理求得线段DE的长度,结合三角形的周长公式解答.【题目详解】(1)在矩形ABCD中,AD=BC,∠A=∠B=9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省大同一中、同煤一中2015届高三上学期期末联合考试政治试题(含答案)
- 银行从业资格考试复习试题及答案
- 银行从业资格考试绿色信贷业务试题及答案
- 传统文化在海外华文教育中的地位
- 2025至2030年中国万恩低泡地毯清洁剂行业投资前景及策略咨询报告
- 2025至2030年中国一般型气压缸市场调查研究报告
- 2025至2030年中国一次性注射针自动装配生产线市场调查研究报告
- 2025至2030年中国PU/EP互穿耐磨地坪涂料行业发展研究报告
- 小学一年级英语下册试卷
- 2025至2030年中国MMDS降频器行业投资前景及策略咨询报告
- 天津市河东区2024-2025学年九年级下学期结课考试化学试题(含答案)
- 动物疾病的临床表现试题及答案
- 广东省广州市2025届高三下学期综合测试(一)英语试卷
- 山东省济南育英中学 2024-2025学年下学期七年级3月月考英语试题(原卷版+解析版)
- T-SDFA 049-2024 混合型饲料添加剂中安普霉素的测定 液相色谱-串联质谱法
- 2025技术服务合同模板
- 2025年保安证学习资源题及答案
- 2025年甘肃甘南州国控资产投资管理集团有限公司面向社会招聘工作人员12人笔试参考题库附带答案详解
- 2025年高考数学第一次模拟考试(江苏卷1)(全解全析)
- 2025年中级维修电工(四级)技能认定理论考试指导题库(含答案)
- 2025广东深圳证券信息有限公司人员招聘笔试参考题库附带答案详解
评论
0/150
提交评论