版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省温岭市实验学校数学八下期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列方程有两个相等的实数根的是()A. B.C. D.2.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在的称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体由脚底至肚脐的长度与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近就越给别人一种美的感觉.某女士身高为,脚底至肚脐的长度与身高的比为为了追求美,地想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为()A. B. C. D.3.如图,在△ABC中,∠ABC的平分线交AC于点D,AD=6,过点D作DE∥BC交AB于点E,若△AED的周长为16,则边AB的长为()A.6 B.8 C.10 D.124.已知:如图,是正方形内的一点,且,则的度数为()A. B. C. D.5.在Rt△ABC中,∠C=90°,D为BC上一点,要使点D到AB的距离等于DC,则必须满足()A.点D是BC的中点B.点D在∠BAC的平分线上C.AD是△ABC的一条中线D.点D在线段BC的垂直平分线上6.如图,在中,分别是边的中点.已知,则四边形的周长为()A. B. C. D.7.如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A. B.2 C.2 D.48.关于x的一元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣89.一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是()A.x≥2 B.x≤2 C.x≥4 D.x≤410.如图,在R△ABC中,∠C=90°,∠A=30°,BC=4cm,则AB等于()A.9cm B.8cm C.7cm D.6cm11.今年我市某县6月1日到10日的每一天最高气温变化如折线图所示,则这10个最高气温的中位数和众数分别是()A.33℃33℃ B.33℃32℃ C.34℃33℃ D.35℃33℃12.到△ABC的三条边距离相等的点是△ABC的().A.三条中线的交点 B.三条边的垂直平分线的交点C.三条高的交点 D.三条角平分线的交点二、填空题(每题4分,共24分)13.如图,P是矩形ABCD内一点,,,,则当线段DP最短时,________.14.如果分式有意义,那么的取值范围是____________.15.若函数y=(a-3)x|a|-2+2a+1是一次函数,则a=.16.如图,平行四边形的对角线相交于点,且,平行四边形的周长为8,则的周长为______.17.如图,小明作出了边长为2的第1个正△,算出了正△的面积.然后分别取△的三边中点、、,作出了第2个正△,算出了正△的面积;用同样的方法,作出了第3个正△,算出了正△的面积,由此可得,第2个正△的面积是__,第个正△的面积是__.18.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=_____度.三、解答题(共78分)19.(8分)在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N.此时,有结论AE=MN,请进行证明;(2)如图2:当点F为AE中点时,其他条件不变,连接正方形的对角线BD,MN与BD交于点G,连接BF,此时有结论:BF=FG,请利用图2做出证明.(3)如图3:当点E为直线BC上的动点时,如果(2)中的其他条件不变,直线MN分别交直线AB、CD于点M、N,请你直接写出线段AE与MN之间的数量关系、线段BF与FG之间的数量关系.图1图2图320.(8分)如图,小亮从点处出发,前进5米后向右转,再前进5米后又向右转,这样走次后恰好回到出发点处.(1)小亮走出的这个边形的每个内角是多少度?这个边形的内角和是多少度?(2)小亮走出的这个边形的周长是多少米?21.(8分)为了解高中学生每月用掉中性笔笔芯的情况,随机抽查了30名高中学生进行调查,并将调查的数据制成如下的表格:月平均用中性笔笔芯(根)456789被调查的学生数749523请根据以上信息,解答下列问题:(1)被调查的学生月平均用中性笔笔芯数大约________根;(2)被调查的学生月用中性笔笔芯数的中位数为________根,众数为________根;(3)根据样本数据,若被调查的高中共有1000名学生,试估计该校月平均用中性笔笔芯数9根的约多少人?22.(10分)化简并求值:其中.23.(10分)如图,在平面直角坐标系中,A9m,0、Bm,0m0,以AB为直径的⊙M交y轴正半轴于点C,CD是⊙M的切线,交x轴正半轴于点D,过A作AECD于E,交⊙于F.(1)求C的坐标;(用含m的式子表示)(2)①请证明:EFOB;②用含m的式子表示AFC的周长;(3)若,,分别表示的面积,记,对于经过原点的二次函数,当时,函数y的最大值为a,求此二次函数的解析式.24.(10分)解分式方程:25.(12分)如图,在△ABC中,D是BC边的中点,分别过B、C做射线AD的垂线,垂足分别为E、F,连接BF、CE.(1)求证:四边形BECF是平行四边形;(2)我们知道S△ABD=S△ACD,若AF=FD,在不添加辅助线的条件下,直接写出与△ABD、△ACD面积相等的所有三角形.26.如图,在“飞镖形”中,、、、分别是、、、的中点.(1)求证:四边形是平行四边形;(2)若,那么四边形是什么四边形?
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
分别计算各选项的判别式△值,然后和0比较大小,再根据一元二次方程根与系数的关系就可以找出符合题意的选项.【题目详解】A、△=b2-4ac=1+24=25>0,方程有两个不相等的实数根,不符合题意;B、△=b2-4ac=36-36=0,方程有两个相等的实数根,符合题意;C、△=b2-4ac=25-40=-15<0,方程没有实数根,不符合题意;D、△=b2-4ac=81>0,方程有两个不相等的实数根,不符合题意,故选B.【题目点拨】本题考查了一元二次方程根的情况与与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、C【解题分析】
根据已知条件算出下半身身高,然后设选的高跟鞋的高度为xcm,根据比值是0.618列出方程,解方程即可【题目详解】根据已知条件得下半身长是160×0.6=96cm设选的高跟鞋的高度为xcm,有解得x≈7.5经检验x≈7.5是原方程的解故选C【题目点拨】本题考查分式方程的应用,能够读懂题意列出方程是本题关键3、C【解题分析】
根据角平分线的定义得到∠EBD=∠CBD,根据平行线的性质得到∠EDB=∠CBD,等量代换得到∠EBD=∠EDB,求得BE=DE,于是得到结论.【题目详解】解:∵BD平分∠ABC,∴∠EBD=∠CBD,∵DE∥BC,∴∠EDB=∠CBD,∴∠EBD=∠EDB,∴BE=DE,∵△AED的周长为16,∴AB+AD=16,∵AD=6,∴AB=10,故选:C.【题目点拨】本题考查了平行线的性质,角平分线的性质,等腰三角形的判定和性质,熟练掌握各定理是解题的关键.4、D【解题分析】
利用等边三角形和正方形的性质求得,然后利用等腰三角形的性质求得的度数,从而求得的度数,利用三角形的内角和求得的度数.【题目详解】解:,是等边三角形,,,,,,同理可得,,故选:.【题目点拨】本题考查了正方形的性质及等边三角形的性质,解题的关键是根据等腰三角形的性质求得有关角的度数,难度不大.5、B【解题分析】
根据角平分线的判定定理解答即可.【题目详解】如图所示,DE为点D到AB的距离.∵DC=DE,∠C=90°,DE⊥AB,∴AD平分∠CAD,则点D在∠BAC的平分线上.故选B.【题目点拨】本题考查了角平分线的判定,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.6、C【解题分析】
根据三角形中位线定理、线段中点的定义解答.【题目详解】解:∵D,E分别是边BC,CA的中点,∴DE=AB=2,AF=AB=2,∵D,F分别是边BC,AB的中点,∴DF=AC=3,AE=AC=3,∴四边形AFDE的周长=AF+DF+DE+AE=2+3+2+3=10,故选:C.【题目点拨】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.7、C【解题分析】
根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.【题目详解】解:∵四边形ABCD是平行四边形,
∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,
∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,
∴BC=AD==1.
故选B.【题目点拨】本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.8、C【解题分析】
利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>1.【题目详解】解:依题意,关于x的一元二次方程,有两个不相等的实数根,即△=b2﹣4ac=42+8c>1,得c>﹣2根据选项,只有C选项符合,故选:C.【题目点拨】本题考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1时,方程有两个相等的实数根;③当△<1
时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.9、B【解题分析】
解不等式ax+b≥0的解集,就是求一次函数y=ax+b的函数值大于或等于0时,自变量的取值范围.【题目详解】不等式ax+b≥0的解集为x≤1.
故选B.【题目点拨】本题考查的知识点是利用图象求解各问题,解题关键是先画函数图象,根据图象观察,得出结论.10、B【解题分析】
根据含30度角的直角三角形的性质即可求出答案.【题目详解】直角三角形中,30°所对的边的长度是斜边的一半,所以AB=2BC=8cm.故选B.【题目点拨】本题考查含30度角的直角三角形,解题的关键是熟练运用30度角的直角三角形的性质,本题属于基础题型.11、A【解题分析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中33℃出现三次,出现的次数最多,故这组数据的众数为33℃.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为31℃,32℃,32℃,33℃,33℃,33℃,34℃,34℃,35℃,35℃,∴中位数是按从小到大排列后第5,6个数的平均数,为:33℃.故选A.12、D【解题分析】
根据角平分线的性质求解即可.【题目详解】到△ABC的三条边距离相等的点是△ABC的三条角平分线的交点故答案为:D.【题目点拨】本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键.二、填空题(每题4分,共24分)13、【解题分析】
因为AP⊥BP,则P点在AB为直径的半圆上,当P点为AB的中点E与D点连线与半圆AB的交点时,DP最短,求出此时PC的长度便可.【题目详解】解:以AB为直径作半圆O,连接OD,与半圆O交于点P′,当点P与P′重合时,DP最短,
则AO=OP′=OB=AB=2,
∵AD=2,∠BAD=90°,
∴OD=2,∠ADC=∠AOD=∠ODC=45°,
∴DP′=OD-OP′=2-2,
过P′作P′E⊥CD于点E,则
P′E=DE=DP′=2-,
∴CE=CD-DE=+2,
∴CP′==.
故答案为.【题目点拨】本题是一个矩形的综合题,主要考查了矩形的性质,勾股定理,圆的性质,关键是作辅助圆和构造直角三角形.14、【解题分析】试题分析:分式有意义的条件是分母不为零,故,解得.考点:分式有意义的条件.15、-1.【解题分析】
∵函数y=(a-1)x|a|-2+2a+1是一次函数,∴a=±1,又∵a≠1,∴a=-1.16、4【解题分析】
由平行四边形ABCD的对角线相交于点O,,根据线段垂直平分线的性质,可得AM=CM,又由平行四边形ABCD的周长为8,可得AD+CD的长,继而可得△CDE的周长等于AD+CD.【题目详解】∵四边形ABCD是平行四边形∴OB=OD,AB=CD,AD=BC∵平行四边形ABCD的周长为8∴AD+CD=4∵∴AM=CM∴△CDE的周长为:CD+CM+DM=CD+AM+DM=AD+CD=4.故答案为:4【题目点拨】本题主要考查了平行四边形的性质,线段垂直平分线的性质。17、,【解题分析】
根据等边三角形的性质求出正△A1B1C1的面积,根据三角形中位线定理得到,根据相似三角形的性质计算即可.【题目详解】正△的边长,正△的面积,点、、分别为△的三边中点,,,,△△,相似比为,△与△的面积比为,正△的面积为,则第个正△的面积为,故答案为:;.【题目点拨】本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18、1【解题分析】分析:连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.详解:连接AC,
∵四边形ABCD是矩形,
∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,
∴∠E=∠DAE,
又∵BD=CE,
∴CE=CA,
∴∠E=∠CAE,
∵∠CAD=∠CAE+∠DAE,
∴∠E+∠E=30°,即∠E=1°,
故答案为1.点睛:本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;(3)AE与MN的数量关系是:AE=MN,BF与FG的数量关系是:BF=FG【解题分析】(1)作辅助线,构建平行四边形PMND,再证明△ABE≌△DAP,即可得出结论;(2)连接AG、EG、CG,构建全等三角形和直角三角形,证明AG=EG=CG,再根据四边形的内角和定理得∠AGE=90°,在R△AGE中,利用直角三角形斜边上的中线等于斜边的一半得BF=AE,FG=AE,则BF=GF;(3)①AE=MN,证明△AEB≌△NMQ;②BF=FG,同理得出BF和FG分别是直角△AEB和直角△AGF斜边上的中线,则BF=AE,FG=AE,所以BF=FG.证明:(1)在图1中,过点D作PD∥MN交AB于P,则∠APD=∠AMN∵正方形ABCD∴AB=AD,AB∥DC,∠DAB=∠B=90°∴四边形PMND是平行四边形且PD=MN∵∠B=90°∴∠BAE+∠BEA=90°∵MN⊥AE于F,∴∠BAE+∠AMN=90°∴∠BEA=∠AMN=∠APD又∵AB=AD,∠B=∠DAP=90°∴△ABE≌△DAP∴AE=PD=MN(2)在图2中连接AG、EG、CG由正方形的轴对称性△ABG≌△CBG∴AG=CG,∠GAB=∠GCB∵MN⊥AE于F,F为AE中点∴AG=EG∴EG=CG,∠GEC=∠GCE∴∠GAB=∠GEC由图可知∠GEB+∠GEC=180°∴∠GEB+∠GAB=180°又∵四边形ABEG的内角和为360°,∠ABE=90°∴∠AGE=90°在Rt△ABE和Rt△AGE中,AE为斜边,F为AE的中点,∴BF=AE,FG=AE∴BF=FG(3)AE与MN的数量关系是:AE=MNBF与FG的数量关系是:BF=FG“点睛”本题是四边形的综合题,考查了正方形、全等三角形、平行四边形的性质与判定,在有中点和直角三角形的前提下,可以利用直角三角形斜边上的中线等于斜边的一半来证明两条线段相等.20、(1)这个边形的每个内角为,这个边形的内角和为3960度;(2)小亮走出这个边形的周长为120米.【解题分析】
(1)这个n边形每个内角度数为180°﹣15°=165°;根据多边形外角和360°,用360除以15求出边数,再利用内角和公式即可求解;(2)周长为边数乘以边长.【题目详解】解:(1)这个边形的每个内角为.∵多边形的外角和为,∴,解得:,∴这个边形的内角和为3960度.(2)(米),所以小亮走出这个边形的周长为120米.【题目点拨】本题主要考查了多边形的内角与外角,解题的关键是通过多边形外角和求解边数,再利用多边形内角和公式求解度数.21、(1)6;(2)6,6;(3)100【解题分析】
(1)根据平均数的概念求解;(2)根据中位数的概念求解;(3)用人数×平均数即可求解.【题目详解】解:(1)月平均用中性笔笔芯数:=6(根);
(2)∵共有30名学生,
∴第15和16为同学的月用中性笔笔芯数的平均数为中位数:=6;被调查的学生月用中性笔笔芯数的众数为:6;(3)1000×=100(根).【题目点拨】本题考查了平均数、中位数和众数等知识,掌握平均数、中位数、众数的概念是解答本题的关键.22、,【解题分析】
先计算异分母分式加法,同时将除法写成乘法再约分,最后将x的值代入计算.【题目详解】原式==,当时,原式=,故答案为:.【题目点拨】此题考查分式的化简计算,正确计算分式的混合运算是解题的关键.23、(1)C(0,3m);(2)①证明见解析;②8m+;(3)或【解题分析】
(1)连接MC,先得出MC=5m,MO=4m,再由勾股定理得出OC=3m,即可得出点C的坐标;(2)①由弦切角定理得∠ECF=∠EAC,再证出FC=BC,再证出△CEF≌△COB,可得到EF=OB;②由△CEF≌△COB可得AE=AO,用勾股定理求出AC、BC.再用等量代换计算可得到AFC的周长(3)先用三角函数求出OD,再用勾股定理列出方程,得到m=1,从而求得的面积,再求出k值。再根据二次函数的性质列出方程求得a的值,从而问题得解。【题目详解】解:(1)连接MC,∵A9m,0、Bm,0m0,∴AB=10m,MC=5m,MO=4m由勾股定理得解得:OC=3m∴C(0,3m)(2)①证明:连接CF,∵CE是⊙M的切线,∴∠ECF=∠EAC,∵AB是直径,∴∠ACB=90°∴∠CAB=∠BCO,∵A,F,C,B共圆,∴∠EFC=∠OBC,又∵AE⊥CE∴∠CEF=∠BOC=90°,∴∠ECF=∠BCO,∴∠EAC=∠CAB∴CF=CB在△CEF和△COB中∴△CEF≌△COB∴EF=BO②∵△CEF≌△COB∴CE=CO,∴△ACE≌△ACO(HL)∴AE=AO∵AFC的周长=AF+FC+AC=AE-EF+FC+AC=AO-BO+FC+AC=9m-m++=8m+(3)∵CD是⊙M的切线,易证∠OCD=∠OMC∴sin∠OMC=sin∠OCD即得在Rt△OCD中,而CO=3m∴m=1∴AF=8,CE=3,∴二次函数的图象过原点,则c=0得对称轴为直线当时,即分两种情况,a<0时,由函数的性质可知,时,y=a,∴解得∴此二次函数的解析式为:A>0时,由函数的性质可知,x=4时,y=a,∴a=16a-4解得∴此二次函数的解析式为:综上,此二次函数的解析式为:或故答案为:或【题目点拨】本题是一个难度较大的综合题,考查了二次函数的性质,圆的切线,圆周角定理,也考查了利用三角函数解直角三角形的知识,综合性强,需要认真理解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版抵押贷款购销合同起草指南3篇
- 二零二五年珠宝玉石交易合同3篇
- 二零二五版新型节能建材采购合同(工地装修)3篇
- 二零二五年度餐饮泔水处理与有机垃圾资源化利用合同2篇
- 二零二五年教育信息化建设项目竞标合同3篇
- 二零二五版新能源居间合同解析与合同属性3篇
- 二零二五版高新技术研发项目合伙投资合同3篇
- 二零二五版数据中心基础设施安装合同6篇
- 二零二五版办公文档范本家政服务合同(双方法律关系)3篇
- 二零二五版拉森钢板桩租赁合同租赁日期及租期计算的详细规定9篇
- 托福阅读讲义
- 输电线路基础知识输电线路组成与型式
- 三年级数字加减法巧算
- GB/T 9755-2001合成树脂乳液外墙涂料
- GB/T 10609.3-1989技术制图复制图的折叠方法
- GB 4053.2-2009固定式钢梯及平台安全要求第2部分:钢斜梯
- 通力电梯培训教材:《LCE控制系统课程》
- 佛山市内户口迁移申请表
- 品管圈PDCA持续质量改进提高静脉血栓栓塞症规范预防率
- 一次函数单元测试卷(含答案)
- 陕西省榆林市各县区乡镇行政村村庄村名居民村民委员会明细
评论
0/150
提交评论