版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省湖州市数学八下期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知多边形的内角和等于外角和,这个多边形的边数为()A. B. C. D.2.下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差为,乙组数据的方差为,则乙组数据比甲组数据稳定3.已知a、b是方程x2-2x-1=0的两根,则a2+a+3b的值是()A.7B.5C.-5D.-74.如图,在中,平分,则的周长是()A. B. C. D.5.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分6.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为()A. B. C. D.7.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.8.如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为().A. B. C. D.9.已知一组数据的方差是3,则这组数据的标准差是()A.9 B.3 C. D.10.如图,点为的平分线上的一点,于点.若,则到的距离为()A.5 B.4 C.3.5 D.3二、填空题(每小题3分,共24分)11.如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=6,AB=12,则AE的长为_______.12.如图,点B在线段AC上,且BC=2AB,点D,E分别是AB,BC的中点,分别以AB,DE,BC为边,在线段AC同侧作三个正方形,得到三个平行四边形(阴影部分).其面积分别记作S1,S2,S3,若S1+S3=15,则S2=_____.13.若函数的图象经过A(1,)、B(-1,)、C(-2,)三点,则,,的大小关系是__________________.14.如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是_____15.若代数式在实数范围内有意义,则实数x的取值范围是__________.16.画在比例尺为的图纸上的某个零件的长是,这个零件的实际长是_______.17.方程12x4-8=0的根是18.若关于的分式方程有增根,则的值为__________.三、解答题(共66分)19.(10分)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后,分别位于点Q、R处,且相距30海里,如果知道“远航”号沿北偏东方向航行,请求出“海天”号的航行方向?20.(6分)如图,正方形,点为对角线上一个动点,为边上一点,且.(1)求证:;(2)若四边形的面积为25,试探求与满足的数量关系式;(3)若为射线上的点,设,四边形的周长为,且,求与的函数关系式.21.(6分)某校团委积极响应南充市“书香天府万卷南充”全民阅读活动,号召全校学生积极捐献图书共建“书香校园”.八(1)班40名同学都捐献了图书,全班40名同学共捐图书320册.班长统计了全班捐书情况如表:册数4567850人数68152(1)分别求出该班级捐献7册图书和8册图书的人数;(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由22.(8分)某校九年级两个班各捐款1800元.已知(2)班比(1)班人均捐款多4元,(2)班的人数比(1)班的人数少10%.求两个班人均捐款各为多少元?23.(8分)先化简,再求值:﹣2(x﹣1),其中x=.24.(8分)用适当的方法解下列方程:(1)x(2﹣x)=x2﹣2(2)(2x+5)2﹣3(2x+5)+2=025.(10分)某班级为奖励参加校运动会的运动员,分别用160元和120元购买了相同数量的甲、乙两种奖品,其中每件甲种奖品比每件乙种奖品贵4元.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.26.(10分)安德利水果超市购进一批时令水果,20天销售完毕,超市将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量(千克)与销售时间(天)之间的函数关系如图甲所示,销售单价(元/千克)与销售时间(天)之间的函数关系如图乙所示。(1)直接写出与之间的函数关系式;(2)分别求出第10天和第15天的销售金额。(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
设多边形的边数为n,则根据多边形的内角和公式与多边形的外角和为360°,列方程解答.【题目详解】解:设多边形的边数为n,根据题意列方程得,
(n−2)•180°=360°,
∴n−2=2,
解得:n=1.
故选:B.【题目点拨】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为360°.2、C【解题分析】
根据调查方式,可判断A,根据概率的意义一,可判断B根据中位数、众数,可判断c,根据方差的性质,可判断D.【题目详解】A、一个游戏中奖的概率是,做100次这样的游戏有可能中奖,而不是一定中奖,故A错误;
B、为了了解全国中学生的心理健康状况,应采用抽查方式,故B错误;
C、一组数据0,1,2,1,1的众数和中位数都是1,故C正确;
D.若甲组数据的方差为,乙组数据的方差为,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D错误.故选:C.【题目点拨】本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键.3、A【解题分析】分析:要求a²+a+3b的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可,注意计算不要出错.详解:由题意知,a+b=2,x²=2x+1,即a²=2a+1,∴a²+a+3b=2a+1+a+3b=3(a+b)+1=3×2+1=1.故选A.点睛:主要考查了根与系数的关系及一元二次方程的解,难度适中,关键掌握用根与系数的关系与代数式变形相结合进行解题.4、C【解题分析】
首先由在▱ABCD中,AD=8,BE=3,求得CE的长,然后由DE平分∠ADC,证得△CED是等腰三角形,继而求得CD的长,则可求得答案.【题目详解】解:∵在▱ABCD中,AD=8,
∴BC=AD=8,AD∥BC,
∴CE=BC-BE=8-3=5,∠ADE=∠CED,
∵DE平分∠ADC,
∴∠ADE=∠CDE,
∴∠CDE=∠CED,
∴CD=CE=5,
∴▱ABCD的周长是:2(AD+CD)=1.
故选:C.【题目点拨】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CED是等腰三角形是解此题的关键.5、C【解题分析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6、C【解题分析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【题目详解】解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD故选:C.【题目点拨】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.7、C【解题分析】
根据轴对称图形与中心对称图形的概念求解.【题目详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【题目点拨】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、A【解题分析】
根据题意可得菱形的两对角线长分别为4cm,5cm,根据面积公式求出菱形的面积.【题目详解】由题意知,AC的一半为2cm,BD的一半为2.5cm,则AC=4cm,BD=5cm,∴菱形的面积为4×5÷2=10cm².故选A.【题目点拨】本题考查了菱形的性质,解题的关键是掌握对角线平分且垂直的菱形的面积等于对角线积的一半.9、D【解题分析】
根据标准差的定义求解即可【题目详解】因为这组数据的方差是3,所以这组数据的标准差是.故答案为:D【题目点拨】本题考查标准差的计算,标准差是方差的算术平方根.10、B【解题分析】
如图,作DH⊥OB于H.利用角平分线的性质定理即可解决问题.【题目详解】如图,作DH⊥OB于H.∵OC平分∠AOB,DE⊥OA,DH⊥OB,∴DE=DH=4,故选B.【题目点拨】本题考查角平分线的性质定理,解题的关键是学会添加常用辅助线.二、填空题(每小题3分,共24分)11、8.4.【解题分析】
过点C作CG⊥AB的延长线于点G,设AE=x,由于▱ABCD沿EF对折可得出AE=CE=x,再求出∠BCG=30°,BG=BC=3,由勾股定理得到,则EG=EB+BG=12-x+3=15-x,在△CEG中,利用勾股定理列出方程即可求出x的值.【题目详解】解:过点C作CG⊥AB的延长线于点G,
∵▱ABCD沿EF对折,∴AE=CE设AE=x,则CE=x,EB=12-x,∵AD=6,∠A=60°,∴BC=6,∠CBG=60°,∴∠BCG=30°,∴BG=BC=3,在△BCG中,由勾股定理可得:∴EG=EB+BG=12-x+3=15-x在△CEG中,由勾股定理可得:解得:故答案为:8.4【题目点拨】本题考查平行四边形的综合问题,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.12、2【解题分析】
设,根据正方形的性质、平行四边形的面积公式分别表示出,,,根据题意计算即可.【题目详解】解:设DB=x,则S1=x1,S1==1x1,S3=1x×1x=4x1.由题意得,S1+S3=15,即x1+4x1=15,解得x1=3,所以S1=1x1=2,故答案为:2.【题目点拨】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是是解题的关键.13、<<【解题分析】
分别计算自变量为1,-1,-2对应的函数值即可得到,,的大小关系.【题目详解】解:当x=1时,=-2×1=-2;当x=-1时,=-2×(-1)=2;当x=-2时,=-2×(-2)=4;∵-2<2<4∴<<故答案为:<<.【题目点拨】本题考查了正比例函数图象上点的坐标特征:正比例函数图象上点的坐标满足其解析式.14、4【解题分析】
根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得出四边形DBEC是菱形,由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【题目详解】∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC,∴BC=1DF=1.又∵∠ABC=90°,∴AB==.∵平行四边形DBEC是菱形,∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4,故答案为4.【题目点拨】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题.15、【解题分析】
根据分式有意义的条件即可解答.【题目详解】因为在实数范围内有意义,所以,即.【题目点拨】本题考查分式有意义的条件,解题的关键是知道要使得分式有意义,分母不为0.16、640【解题分析】
首先设这个零件的实际长是xcm,根据比例尺的定义即可得方程,解此方程即可求得答案,注意单位换算.【题目详解】解:设这个零件的实际长是xcm,根据题意得:,解得:x=640,则这个零件的实际长是640cm.故答案为:640【题目点拨】此题考查了比例尺的应用.此题比较简单,注意掌握方程思想的应用.17、±2【解题分析】
因为(±2)4=16,所以16的四次方根是±2.【题目详解】解:∵12x4-8=0,∴x4∵(±2)4=16,∴x=±2.故答案为:±2.【题目点拨】本题考查的是四次方根的概念,解答此类题目时要注意一个正数的偶次方根有两个,这两个数互为相反数.18、【解题分析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x-1)(x+1)=0,得到x=1或-1,然后代入化为整式方程的方程,满足即可.【题目详解】方程两边都乘(x-5),得1-a=x-5,∴x=7-a∵原方程有增根,∴最简公分母x-5=0,解得x=5,∴7-a=5;∴a=1.故答案为:1.【题目点拨】本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行:①让最简公分母为0确定可能的增根;②化分式方程为整式方程;③把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.三、解答题(共66分)19、“海天”号的航行方向是沿北偏西方向航行【解题分析】
直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角得出答案.【题目详解】由题意可得:RP=18海里,PQ=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“远航”号沿北偏东60°方向航行,∴∠RPN=30°,∴“海天”号沿北偏西30°方向航行.【题目点拨】此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.20、(1)见解析;(2);(3).【解题分析】
(1)如图1中,作PE⊥BC于E,PF⊥CD于F.只要证明△PEB≌△PFQ即可解决问题;(2)根据S四边形BCQP=S四边形CEPF即可解决问题;(3)如图2,过P做EF∥AD分别交AB和CD于E、F,易知,由,推出,由,推出,由此即可解决问题.【题目详解】(1)如图1中,作于,于,四边形是正方形,,于,于,,,四边形是矩形,,四边形是正方形,,,,,;(2)如图1中,由(1)可知,四边形是正方形,,,,,,,;(3)如图2,过做分别交和于、,,,,,,,.【题目点拨】本题考查的是四边形综合题,涉及了全等三角形的判定和性质、正方形的性质和判定等知识,正确添加辅助线,灵活运用所学知识是解题的关键.21、(1)1,3;(2)8,1,1,平均数不能反映该班同学捐书册数的一般情况,,理由见解析.【解题分析】
(1)根据:全班40名同学和共捐图书320册这两个相等关系,设捐献7册的人数为x,捐献8册的人数为y,就可以列出方程组解决.(2)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.然后根据它们的意义判断.【题目详解】解:(1)设捐款7册的x人,捐款8册的y人,由题意可得:解得:答:捐款7册的1人,捐款8册的3人;(2)平均数为:320÷40=8,∵40个数据的中间是第20,21个数据的平均数,∴中位数为:(1+1)÷2=1,众数是1.因为平均数8受两个50的影响较大,所以平均数不能反映该班同学捐书册数的一般情况.【题目点拨】此题主要考查了二元一次方程组的应用以及众数、中位数的定义,根据题意得出正确等量关系式是解题关键.22、1班人均捐款36元,2班人均捐款40元.【解题分析】
解:设1班有x人,则2班有0.9x人,由题意,得-=4,解之得x=50(人).经检验x=50是原分式方程的根.∴2班有45人,∴1班人均捐款为=36(元),2班人均捐款为=40(元).答:1、2两个班人均捐款各36元和40元.23、原式=2-x,.【解题分析】
原式第一项约分,第二项去括号,合并得到最简结果,将x的值代入计算即可求出值.【题目详解】原式=﹣2x+2=x﹣2x+2=2﹣x,当x==2﹣时,原式=2﹣2+=.【题目点拨】本题考查了分式的化简求值,分母有理化,熟练掌握分式混合运算的运算法则以及分母有理化的方法是解题的关键.24、(1)x1=,x1=;(1)x1=﹣,x1=﹣1.【解题分析】
(1)整理后求出b1﹣4ac的值,再代入公式求出即可;(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【题目详解】(1)x(1﹣x)=x1﹣1,整理得:x1﹣x﹣1=0,△=b1﹣4ac=(﹣1)1﹣4×1×(﹣1)=5,x,∴x1,x1;(1)(1x+5)1﹣3(1x+5)+1=0,(1x+5﹣1)(1x+5﹣1)=0,1x+5﹣1=0,1x+5﹣1=0,∴x1,x1=﹣1.【题目点拨】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解答此题的关键.25、问题:甲、乙两种奖品的单价分别是多少元?每件甲种奖品为16元,每件乙种奖品为12元.【解题分析】
首先提出问题,例如:甲、乙两种奖品的单价分别是多少元?然后根据本题的等量关系列出方程并求解。【题目详解】问题:甲、乙两种奖品的单价分别是多少元?解:设每件乙种奖品为x元,则每件甲种奖品为(x+4)元,列方程得:160x=120(x+4)x=12经检验,x=12是原分式方程的解。则:x+4=16答:每件甲种奖品为16元,每件乙种奖品为12元.【题目点拨】本题考查了分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解。26、(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元.【解题分析】
(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年岳麓版选修6历史下册阶段测试试卷含答案
- 2025年华师大版选修2地理下册阶段测试试卷
- 2025年北师大新版选修5历史上册阶段测试试卷含答案
- 2025年外研版三年级起点选择性必修3历史上册月考试卷含答案
- 2025年浙教版选修6历史下册月考试卷
- 二零二五版面料行业标准制定与采购合同范本3篇
- 二零二五年度生物制药项目与派遣公司研发人员派遣合同4篇
- 二零二五版派遣人力资源管理顾问人才派遣与咨询合同4篇
- 二零二五版商业综合体租赁合同范本4篇
- 二零二五年度个人汽车租赁贷款合同范本3篇
- 选煤厂安全知识培训课件
- 项目前期选址分析报告
- 急性肺栓塞抢救流程
- 《统计学-基于Python》 课件全套 第1-11章 数据与Python语言-时间序列分析和预测
- 《形象价值百万》课件
- 红色文化教育国内外研究现状范文十
- 中医基础理论-肝
- 小学外来人员出入校门登记表
- 《土地利用规划学》完整课件
- GB/T 25283-2023矿产资源综合勘查评价规范
- 《汽车衡全自动智能称重系统》设计方案
评论
0/150
提交评论