数学-专题18.6 三角形的中位线【九大题型】(举一反三)(人教版)(原版)_第1页
数学-专题18.6 三角形的中位线【九大题型】(举一反三)(人教版)(原版)_第2页
数学-专题18.6 三角形的中位线【九大题型】(举一反三)(人教版)(原版)_第3页
数学-专题18.6 三角形的中位线【九大题型】(举一反三)(人教版)(原版)_第4页
数学-专题18.6 三角形的中位线【九大题型】(举一反三)(人教版)(原版)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题18.6三角形的中位线【九大题型】【人教版】TOC\o"1-3"\h\u【题型1利用三角形的中位线求角度】 1【题型2利用三角形的中位线求线段长度】 2【题型3利用三角形的中位线求周长】 3【题型4利用三角形的中位线求面积】 5【题型5利用三角形的中位线求最值】 6【题型6与三角形中位线有关的规律探究】 7【题型7与三角形中位线有关的格点作图】 8【题型8三角形中位线的实际应用】 10【题型9与三角形中位线有关的证明】 11【知识点三角形的中位线】定义:连接三角形两边中点的线段叫做三角形的中位线。中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。【题型1利用三角形的中位线求角度】【例1】(2022春·江苏苏州·八年级校考期中)如图,在四边形ABCD中,AD=BC,E、F、G分别是AB,CD,AC的中点,若∠DAC=17°,∠ACB=91°,则∠FEG等于(

)A.36° B.72° C.74° D.37°【变式1-1】(2022秋·福建泉州·九年级晋江市季延中学校考期末)如图,在△ABC中,D、E分别是边AB、AC的中点,∠B=32°.现将△ADE沿DE折叠,点A落在三角形所在平面内的点为A′,则∠BD

A.58° B.116° C.122° D.148°【变式1-2】(2022春·北京·八年级人大附中校考期中)如图,四边形ABCD的对角线AC平分∠BAD,∠ABC=90°,∠ACB=28°,且CD=AC,点O,E分别是AC,AD的中点,则∠BOE的度数为_____________.【变式1-3】(2022春·山西太原·八年级统考期末)如图,已知△ABC中,D,E分别是AB,AC的中点,连接DE并延长至F.使EF=DE,连接CF.若∠B=45°,则∠F的度数为_____.【题型2利用三角形的中位线求线段长度】【例2】(2022春·湖北武汉·八年级校联考期中)如图,Rt△ABC中,∠BAC=90°,AB=6,BC=10,AD、AE分别是其角平分线和中线,过点B作BG⊥AD于G,交AC于F,连接EG,则线段EG的长为(

A.12 B.1 C.32

【变式2-1】(2022秋·河南南阳·九年级期末)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF,若AE=BE,OE=3,OA=4,则线段OF的长为(

)A.5 B.25 C.33【变式2-2】(2022秋·河南新乡·九年级校考期末)如图,在△ABC中,AE平分∠BAC,D是BC的中点AE⊥BE,AB=5,AC=3,则DE的长为(

)A.1 B.32 C.2 D.【变式2-3】(2022秋·安徽宣城·八年级校考期中)如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A.32 B.52 C.3 【题型3利用三角形的中位线求周长】【例3】(2022春·河北唐山·八年级统考期中)如图,在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点.AB=10,BC=8,DE=4.5,则△DEF的周长是(

A.14.5 B.12.5 C.9.5 D.13.5【变式3-1】(2022春·浙江杭州·八年级杭州英特外国语学校校考期中)如图,已知矩形ABCD的对角线AC的长为10cm,连接矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为(

)cmA.10 B.20 C.30 D.40【变式3-2】(2022春·河南信阳·八年级统考期末)如图,点D是△ABC内一点,BD⊥CD,AD=11,BD=8,CD=6,点E,F,G,H分别是AB,AC,CD,BD的中点,则四边形EFGH的周长是().A.14 B.18 C.21 D.24【变式3-3】(2022春·重庆·八年级重庆南开中学校考期末)如图,矩形ABCD的对角线AC,BD交于点O,E为BC边上一点,连接DE,F为DE的中点,连接OF,CF,若△BED的周长为10,则△OCF的周长为(

)A.4 B.5 C.6 D.7

【题型4利用三角形的中位线求面积】【例4】(2022春·山东德州·八年级校考期末)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是________【变式4-1】(2022春·广东深圳·八年级统考期末)如图,EF是△ABC的中位线,点O是EF上一点,且满足OE=2OF,则△ABC的面积与△AOC的面积之比为(

)A.2:1 B.3:2 C.5:3 D.3:1【变式4-2】(2022春·河北石家庄·八年级统考期末)如图,在给定的△ABC中,动点D从点B出发沿BC方向向终点C运动,DE∥AC交AB于点E,DF∥AB交AC于点F,O是EF的中点,在整个运动过程中,△OBC的面积的大小变化情况是()A.不变 B.一直增大C.先增大后减小 D.先减小后增大【变式4-3】(2022春·江苏苏州·八年级校考期末)如图,在△ABC中,D,E分别是AB,AC的中点,F是BC边上的一个动点,连接DE,EF,FD.若△ABC的面积为18cm2,则△DEF的面积是__cm2

【题型5利用三角形的中位线求最值】【例5】(2022秋·山东泰安·八年级校考期末)如图,在菱形ABCD中,∠B=45°,BC=23,E,F分别是边CD,BC上的动点,连接AE和EF,G,H分别为AE,EF的中点,连接GH,则GHA.3 B.62 C.63【变式5-1】(2023秋·河南南阳·九年级南阳市第三中学校考期末)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为平面直角坐标系内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最小值为(

)A.22−1 B.22+1 C.【变式5-2】(2023秋·陕西西安·九年级统考期末)如图,矩形ABCD中,AB=8,AD=4,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则【变式5-3】(2022春·甘肃兰州·八年级校考期末)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值是()

A.5 B.53 C.52 D.不能确定【题型6与三角形中位线有关的规律探究】【例6】(2022春·辽宁丹东·八年级校考期末)如下图,在边长为a的等边△ABC中,分别取△ABC三边的中点A1,B1,C1,得△A1B1C1;再分别取△A1B1【变式6-1】(2022秋·浙江湖州·九年级统考期末)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为ℎ1;还原纸片后,再将△ADC沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为ℎ2;按上述方法不断操作下去,经过第4次操作后得到的折痕D3E3A.3116 B.174 C.158

【变式6-2】(2022秋·山东济南·九年级统考期中)如图,△ABC是边长为1的等边三角形,分别取AC、BC边的中点D、E,连接DE,作EF∥AC得到四边形EDAF,它的周长记作C1;分别取EF,BE的中点D1,E1【变式6-3】(2022秋·江苏连云港·八年级统考期中)如图,在△A1A2A3中,∠A1A3A2=90°,∠A2=30°,【题型7与三角形中位线有关的格点作图】【例7】(2022春·浙江杭州·九年级期末)如图,在6×6的方格纸中,线段AB的两个端点分别落在格点上,请按要求画图:(1)在图1中画一个格点四边形APBQ,且AB与PQ垂直.(2)在图2中画一个以AB为中位线的格点△DEF.【变式7-1】(2022秋·山西晋城·九年级统考期末)请在如图所示的正方形和等边三角形网格内,仅用无刻度的直尺完成下列作图,过点P向线段AB引平行线.

【变式7-2】(2022·浙江温州·校考二模)如图,在所给的方格纸中,每个小正方形的边长都是1,四边形ABCD是平行四边形,连结AC(点A,B,C,D均在格点上),请按要求完成下列作图任务.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.(1)在图1中作△ABC的中位线EF,且AC=2EF;(2)在图2中取边AD上点G,以AG,AC为邻边作▱GACH,且▱GACH的面积等于△ABC的面积.【变式7-3】(2022·四川乐山·三模)如图,在4×4的正方形网格图中,点A、B均在格点上,请按要求完成下列解答:(注:作图仅能使用无刻度的直尺,且要求保留作图痕迹.请你借助网格图完成第(2)、(3)、(4)小题的作图).(1)直接写出线段AB的长为;(2)在网格图中找一个格点C,连接BC,使BC⊥AB;(3)在网格图中,用正确的方法画出线段AB的中点D;(4)连接AC并在线段AC上找一点E,连接DE,使DE∥BC.

【题型8三角形中位线的实际应用】【例8】(2022春·湖北·八年级校考期中)如图,某花木场有一块如四边形ABCD形状的空地,其中AD//BC,∠B=∠BCD,其各边中点分别是E、F、G、H,测得对角线AC=10m,现想利用篱笆围成四边形EFGHA.40m B.30m C.20m D.10m【变式8-1】(2022春·广东惠州·八年级校联考期末)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC.分别取AC,BC的中点D,E,测得D,E两点间的距离为20m,则A,B两点间的距离为______m.【变式8-2】(2022春·重庆南岸·八年级统考期末)某地为了更好地保护红军历史博物馆,经过精心的筹备规划,决定把原来博物馆的平面图扩大.如图,已知原来博物馆的平面图是▱ABCD,规划后博物馆的平面图是四边形EFGH,其中点A,B,C,D分别是边EF,FG,GH,HE的中点.如果原来博物馆的平面图▱ABCD的面积为300m2,则规划后博物馆的平面图EFGH占地面积为________m【变式8-3】(2022秋·陕西商洛·八年级统考期末)如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?

聪明的小华通过独立思考,很快得出了解决这个问题的正确方法.她把管道l看成一条直线(图2),问题就转化为:要在直线l上找一点P,使AP与BP的和最小,她的做法是这样的:①作点B关于直线l的对称点B′;②连接AB′交直线l于点P,则点P即为所求.请你参照小华的做法解决下列问题,如图(3),在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE的周长最小.(1)在图中作出点P(保留作图痕迹,不写作法);(2)求△PDE周长的最小值.【题型9与三角形中位线有关的证明】【例9】(2022秋·山东青岛·九年级校考期末)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2BC,E、F、G分别是OC、OD、AB的中点.求证:(1)BE⊥AC;(2)连接AF,求证:四边形AGEF是菱形.【变式9-1】(2022秋·吉林长春·九年级统考期末)【教材呈现】如图是华师版九年级上册数学教材第80页的第3题,请完成这道题的证明.

【结论应用】(1)如图②,在上边题目的条件下,延长图①中的线段AD的延长线交NM的延长线于点E,延长线段BC交NM的延长线于点F.求证:∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.【变式9-2】(2022秋·安徽合肥·九年级校联考期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【变式9-3】(20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论