版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市武进区2024届八年级数学第二学期期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列各组数据中的是三个数作为三角形的边长,其中能构成直角三角形的是()A.1,2,3 B.3,4,5 C.5,6,7 D.72.分式有意义的条件是()A. B. C. D.3.一次函数y=3x+m-2的图象不经过第二象限,则m的取值范围是()A.m≤2B.m≤-2C.m>2D.m<24.如图,在中,,点是边上一点,,则的大小是()A.72° B.54° C.38° D.36°5.直线的截距是()A.—3 B.—2 C.2 D.36.下列二次根式中,化简后能与合并的是A. B. C. D.7.下列运算正确的是()A. B.(m2)3=m5 C.a2•a3=a5 D.(x+y)2=x2+y28.如图,在菱形ABCD中,AB=AC=1,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△ADO≌△ACH;④;其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个9.如图,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=108°,则∠D=()A.144° B.110° C.100° D.108°10.点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75° B.60° C.30° D.45°11.下列各组数,不能作为直角三角形的三边长的是()A.3,4,5 B.1,1, C.2,3,4 D.6,8,1012.如图,在正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是()A.135° B.120° C.1.5° D.2.5°二、填空题(每题4分,共24分)13.计算=_____.14.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是,则甲、乙两名同学成绩更稳定的是.15.在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为_____.16.若已知方程组的解是,则直线y=-kx+b与直线y=x-a的交点坐标是________。17.将菱形以点为中心,按顺时针方向分别旋转,,后形成如图所示的图形,若,,则图中阴影部分的面积为__.18.一次函数与的图象如图,则的解集是__.三、解答题(共78分)19.(8分)将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;(2)若AB=8,AD=4,求四边形DHBG的面积.20.(8分)如图,在平行四边形ABCD中,点E,F分别是边AD,BC上的点,且AE=CF,求证:AF=CE.21.(8分)问题:探究函数的图象与性质.小明根据学习函数的经验,对函数的图象与性质进行了研究.下面是小明的研究过程,请补充完成.(1)自变量的取值范围是全体实数,与的几组对应值列表如下:…-4-3-2-104……210n01m34…其中,m=n=;(2)在如图所示的平面直角坐标中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象.(3)观察图象,写出该函数的两条性质.22.(10分)已知平面直角坐标系中,点P的坐标为(1)当m为何值时,点P到x轴的距离为1?(2)当m为何值时,点P到y轴的距离为2?(3)点P可能在第一象限坐标轴夹角的平分线上吗?若可能,求出m的值;若不可能,请说明理由.23.(10分)如图,在平面直角坐标系中,是原点,的顶点、的坐标分别为、,反比例函数的图像经过点.(1)求点的坐标;(2)求的值.(3)将沿轴翻折,点落在点处.判断点是否落在反比例函数的图像上,请通过计算说明理由.24.(10分)如图,直线l是一次函数y=kx+b的图象.(1)求出这个一次函数的解析式.(2)根据函数图象,直接写出y<2时x的取值范围.25.(12分)解不等式组,并把解集表示在下面的数轴上.26.如图,在中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD、CD;(1)求证:;(2)当时,猜想四边形ABCD是什么四边形,并证明你的结论;(3)当,,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?
参考答案一、选择题(每题4分,共48分)1、A【解题分析】
根据勾股定理的逆定理逐项分析即可.【题目详解】解:A、∵12+(2)2=(3)2,∴能构成直角三角形;B、(3)2+(4)2≠(5)2,∴不能构成直角三角形;C、52+62≠72,∴不能构成直角三角形;D、∵72+82≠92,∴不能构成直角三角形.故选:A.【题目点拨】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.2、C【解题分析】
根据分式有意义的定义即可得出答案.【题目详解】∵分式有意义∴x-2≠0,即x≠2故答案选择C.【题目点拨】本题考查的是分式有意义,比较简单,分式有意义即分母不等于0.3、A【解题分析】一次函数y=3x+m-2的图象不经过第二象限,可得m-2≤0,解得m≤2,故选A.4、D【解题分析】
由BD=BC=AD,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC,则∠ABC=∠C=2x,在△ABC中,根据三角形的内角和定理列方程求解.【题目详解】解:∵BD=BC=AD,
∴设∠A=∠ABD=x,则∠C=∠CDB=2x,
又∵AB=AC,
∴∠ABC=∠C=2x,
在△ABC中,∠A+∠ABC+∠C=180°,
即x+2x+2x=180°,
解得x=36°,
即∠A=36°.
故选:D.【题目点拨】本题考查了等腰三角形的性质.关键是利用等腰三角形的等边对等角的性质,三角形外角的性质,三角形内角和定理列方程求解.5、A【解题分析】
由一次函数y=kx+b在y轴上的截距是b,可求解.【题目详解】∵在一次函数y=2x−1中,b=−1,∴一次函数y=2x−1的截距b=−1.故选:A.【题目点拨】本题考查了一次函数图象上点的坐标特征.一次函数图象上的点的坐标,一定满足该函数的关系式.6、B【解题分析】
根据二次根式的性质把各选项的二次根式化简,再根据能合并的二次根式是同类二次根式解答.【题目详解】、,不能与合并,故本选项错误;、,能与合并,故本选项正确;、,不能与合并,故本选项错误;、,不能与合并,故本选项错误.故选.【题目点拨】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.7、C【解题分析】A、=3,本选项错误;B、(m2)3=m6,本选项错误;C、a2•a3=a5,本选项正确;D、(x+y)2=x2+y2+2xy,本选项错误,故选C8、B【解题分析】
根据菱形的性质,利用SAS证明即可判断①;根据△ABF≌△CAE得到∠BAF=∠ACE,再利用外角的性质以及菱形内角度数即可判断②;通过说明∠CAH≠∠DAO,判断△ADO≌△ACH不成立,可判断③;再利用菱形边长即可求出菱形面积,可判断④.【题目详解】解:∵在菱形ABCD中,AB=AC=1,∴△ABC为等边三角形,∴∠B=∠CAE=60°,又∵AE=BF,∴△ABF≌△CAE(SAS),故①正确;∴∠BAF=∠ACE,∴∠FHC=∠ACE+∠HAC=∠BAF+∠HAC=60°,故②正确;∵∠B=∠CAE=60°,则在△ADO和△ACH中,∠OAD=60°=∠CAB,∴∠CAH≠60°,即∠CAH≠∠DAO,∴△ADO≌△ACH不成立,故③错误;∵AB=AC=1,过点A作AG⊥BC,垂足为G,∴∠BAG=30°,BG=,∴AG==,∴菱形ABCD的面积为:==,故④错误;故正确的结论有2个,故选B.【题目点拨】本题考查了全等三角形判定和性质,菱形的性质和面积,等边三角形的判定和性质,外角的性质,解题的关键是利用菱形的性质证明全等.9、D【解题分析】
根据两直线平行,同旁内角互补求出∠B,再根据等腰三角形两底角相等求出∠ACB,然后根据两直线平行,内错角相等可得∠DAC=∠ACB,再根据等腰三角形两底角相等列式计算即可得解.【题目详解】∵AD∥BC,∴∠B=180°﹣∠BAD=180°﹣108°=72°,∵BC=AC,∴∠BAC=∠B=72°,∴∠ACB=180°﹣2×72°=36°,∵AD∥BC,∴∠DAC=∠ACB=36°,∵AD=CD,∴∠DCA=∠DAC=36°,∴∠D=180°﹣36°×2=108°,故选D.【题目点拨】本题考查了等腰三角形的性质,平行线的性质,熟练掌握相关知识是解题的关键.10、D【解题分析】
过E作AB的延长线AF的垂线,垂足为F,可得出∠F为直角,又四边形ABCD为正方形,可得出∠A为直角,进而得到一对角相等,由旋转可得∠DPE为直角,根据平角的定义得到一对角互余,在直角三角形ADP中,根据两锐角互余得到一对角互余,根据等角的余角相等可得出一对角相等,再由PD=PE,利用AAS可得出三角形ADP与三角形PEF全等,根据确定三角形的对应边相等可得出AD=PF,AP=EF,再由正方形的边长相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代换可得出EF=BF,即三角形BEF为等腰直角三角形,可得出∠EBF为45°,再由∠CBF为直角,即可求出∠CBE的度数.【题目详解】过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°,∴∠ADP+∠APD=90°,由旋转可得:PD=PE,∠DPE=90°,∴∠APD+∠EPF=90°,∴∠ADP=∠EPF,在△APD和△FEP中,∵,∴△APD≌△FEP(AAS),∴AP=EF,AD=PF,又∵AD=AB,∴PF=AB,即AP+PB=PB+BF,∴AP=BF,∴BF=EF,又∠F=90°,∴△BEF为等腰直角三角形,∴∠EBF=45°,又∠CBF=90°,则∠CBE=45°.故选D.【题目点拨】此题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,以及等腰直角三角形的判定与性质,其中作出相应的辅助线是解本题的关键.11、C【解题分析】
根据勾股定理的逆定理,只需验证两较小边的平方和是否等于最长边的平方即可.【题目详解】A.3+4=25=5,故能构成直角三角形,故本选项错误;B.1+1=2=(),故能构成直角三角形,故本选项错误;C.2+3=13≠4,故不能构成直角三角形,故本选项正确;D.6+8=100=10,故能构成直角三角形,故本选项错误。故选C.【题目点拨】此题考查勾股定理的逆定理,解题关键在于掌握其定义12、C【解题分析】
因为正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线BF交于P,所以∠DBC=∠BDC=45°,∠DBF=∠FBE=6.5°,所以∠BPD=∠PBC+∠BCP=90°+6.5°=4.5°.所以∠FPC=∠BPD=4.5°.故选C考点:4.正方形的性质;5.菱形的性质;6.三角形外角的性质.二、填空题(每题4分,共24分)13、2【解题分析】
根据二次根式乘法法则进行计算.【题目详解】=.故答案是:2.【题目点拨】考查了二次根式的乘法,解题关键是运用二次根式的乘法法则进行计算.14、乙【解题分析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵,∴甲、乙两名同学成绩更稳定的是乙.15、24【解题分析】
设其余两边长分别为、,根据勾股定理列出方程,解方程求出,计算即可.【题目详解】设其余两边长分别为、,由勾股定理得,,整理得,,解得,(舍去),,则其余两边长分别为、,则这个三角形的周长.故答案为:.【题目点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是、,斜边长为,那么.16、(-1,3)【解题分析】
利用一次函数与二元一次方程组的关系,可知两一次函数的交点坐标就是两函数解析式所组成的方程组的解,可得结果.【题目详解】解:∵方程组的解是,∴直线y=kx−b与直线y=−x+a的交点坐标为(−1,3),∴直线y=-kx+b与直线y=x-a的交点坐标为(-1,3).故答案为:(-1,3)【题目点拨】本题考查了一次函数与二元一次方程(组):两一次函数的交点坐标是两函数解析式所组成的方程组的解.17、【解题分析】
由菱形性质可得AO,BD的长,根据.可求,则可求阴影部分面积.【题目详解】连接,交于点,,四边形是菱形,,,,,且,将菱形以点为中心按顺时针方向分别旋转,,后形成的图形,故答案为:【题目点拨】本题考查了:图形旋转的性质、菱形的性质、直角三角形的性质,掌握菱形性质是解题的关键.18、【解题分析】
不等式kx+b-(x+a)>0的解集是一次函数y1=kx+b在y2=x+a的图象上方的部分对应的x的取值范围,据此即可解答.【题目详解】解:不等式的解集是.故答案为:.【题目点拨】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(共78分)19、(1)四边形DHBG是菱形,理由见解析;(2)1.【解题分析】
(1)由四边形ABCD、FBED是完全相同的矩形,可得出△DAB≌△DEB(SAS),进而可得出∠ABD=∠EBD,根据矩形的性质可得AB∥CD、DF∥BE,即四边形DHBG是平行四边形,再根据平行线的性质结合∠ABD=∠EBD,即可得出∠HDB=∠HBD,由等角对等边可得出DH=BH,由此即可证出▱DHBG是菱形;(2)设DH=BH=x,则AH=8-x,在Rt△ADH中,利用勾股定理即可得出关于x的一元一次方程,解之即可得出x的值,再根据菱形的面积公式即可求出菱形DHBG的面积.【题目详解】解:四边形是菱形.理由如下:∵四边形、是完全相同的矩形,∴,,.在和中,,∴,∴.∵,,∴四边形是平行四边形,,∴,∴,∴是菱形.由,设,则,在中,,即,解得:,即,∴菱形的面积为.【题目点拨】本题考查了菱形的判定与性质、矩形的性质、全等三角形的判定与性质以及勾股定理,解题的关键是:(1)利用等角对等边找出DH=BH;(2)利用勾股定理求出菱形的边长.20、见解析【解题分析】
根据平行四边形ABCD的对边平行得出AD∥BC,又AE=CF,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF为平行四边形,然后根据平行四边形的对边相等证得结论.【题目详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,即AE∥CF,又∵AE=CF,∴四边形AECF为平行四边形,∴AF=CE.【题目点拨】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.21、(1)m=2,n=-1;(2)见解析;(3)见解析.【解题分析】
(1)将n、m对应的x的值带入解析式即可;(2)根据表格中的点坐标再直角坐标系上标出,在连接各点即可;(3)根据函数的最值、对称性、增减性回答即可.【题目详解】解:(1)将带入函数中得:,将带入中得:;(2)如图所示:(3)(答案不唯一,合理即可)1、函数关于直线对称;2、函数在时取得最小值,最小值为-1【题目点拨】本题是新型函数题型,是中考必考题型,解题的关键是通过函数的基本性质以及图象的分析得到相关的值和特殊的函数性质.22、(1),;(2),;(3)不可能,理由见解析.【解题分析】
(1)根据点到轴的距离为,可求的值;(2)根据点到轴的距离为,可求的值;(3)根据角平分线上的点到角两边距离相等,可求的值,且点在第一象限,可求的范围,即可判断可能性.【题目详解】解:点P到x轴的距离为1,,
点P到y轴的距离为2,,
如果点P可能在第一象限坐标轴夹角的平分线上点P在第一象限
,,不合题意
点P不可能在第一象限坐标轴夹角的平分线上.【题目点拨】本题考查了点到坐标,关键是利用点的坐标的性质解决问题.23、(1);(2);(3)点不落在反比例函数图像上.【解题分析】
(1)根据平行四边形的性质,可得的坐标;(2)已知的坐标,可得的值;(3)根据图形全等和对称,可得坐标,代入反比例函数,可判断是否在图像上.【题目详解】解:(1)∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024运输公司车辆挂靠合同
- 2024沥青采购合同
- 专题07.理解词语的含义-2023年四升五语文暑期阅读专项提升(统编版)
- 专题10 开放性题目-2022-2023学年小升初语文记叙文知识点衔接(部编版)
- 2024美容美发股份合同范本
- 2024证券交易委托代理合同范文
- 2024上海市房屋租赁(商品房预租)合同样本合同范本
- 深圳大学《医电创新基础实验》2022-2023学年期末试卷
- 别墅土建合同(2篇)
- 领队徒步出游免责协议书(2篇)
- 固定资产明细账
- 《大灰狼娶新娘》PPT
- 康复治疗技术(康复养老服务)专业群建设方案
- 夫妻同意卖房房款分配协议
- AT和D-Dimer的临床应用进展课件(PPT 44页)
- 部编本小学语文一年级上册第1课《秋天》教学设计(第一课时)
- 国家开放大学《人文英语3》章节测试参考答案
- DB33∕1121-2016 民用建筑电动汽车充电设施配置与设计规范
- 农产品质量安全及农药安全科学使用技术
- 浆囊袋注浆锚杆应用介绍
- 化粪池有限空间告知牌
评论
0/150
提交评论